Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0even Structured version   Visualization version   GIF version

Theorem 0even 46783
Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
Assertion
Ref Expression
0even 0 ∈ 𝐸
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 0even
StepHypRef Expression
1 0z 12566 . . 3 0 ∈ ℤ
2 2cn 12284 . . . 4 2 ∈ ℂ
3 0zd 12567 . . . . 5 (2 ∈ ℂ → 0 ∈ ℤ)
4 oveq2 7414 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
54eqeq2d 2744 . . . . . 6 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
65adantl 483 . . . . 5 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
7 mul01 11390 . . . . . 6 (2 ∈ ℂ → (2 · 0) = 0)
87eqcomd 2739 . . . . 5 (2 ∈ ℂ → 0 = (2 · 0))
93, 6, 8rspcedvd 3615 . . . 4 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
102, 9ax-mp 5 . . 3 𝑥 ∈ ℤ 0 = (2 · 𝑥)
11 eqeq1 2737 . . . . 5 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
1211rexbidv 3179 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
1312elrab 3683 . . 3 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
141, 10, 13mpbir2an 710 . 2 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
15 2zrng.e . 2 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
1614, 15eleqtrri 2833 1 0 ∈ 𝐸
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  wrex 3071  {crab 3433  (class class class)co 7406  cc 11105  0cc0 11107   · cmul 11112  2c2 12264  cz 12555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-ltxr 11250  df-neg 11444  df-2 12272  df-z 12556
This theorem is referenced by:  2zlidl  46786  2zrng0  46790  2zrngamnd  46793  2zrngacmnd  46794  2zrngmmgm  46798
  Copyright terms: Public domain W3C validator