Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0even Structured version   Visualization version   GIF version

Theorem 0even 48221
Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
Assertion
Ref Expression
0even 0 ∈ 𝐸
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 0even
StepHypRef Expression
1 0z 12482 . . 3 0 ∈ ℤ
2 2cn 12203 . . . 4 2 ∈ ℂ
3 0zd 12483 . . . . 5 (2 ∈ ℂ → 0 ∈ ℤ)
4 oveq2 7357 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
54eqeq2d 2740 . . . . . 6 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
65adantl 481 . . . . 5 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
7 mul01 11295 . . . . . 6 (2 ∈ ℂ → (2 · 0) = 0)
87eqcomd 2735 . . . . 5 (2 ∈ ℂ → 0 = (2 · 0))
93, 6, 8rspcedvd 3579 . . . 4 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
102, 9ax-mp 5 . . 3 𝑥 ∈ ℤ 0 = (2 · 𝑥)
11 eqeq1 2733 . . . . 5 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
1211rexbidv 3153 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
1312elrab 3648 . . 3 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
141, 10, 13mpbir2an 711 . 2 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
15 2zrng.e . 2 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
1614, 15eleqtrri 2827 1 0 ∈ 𝐸
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  (class class class)co 7349  cc 11007  0cc0 11009   · cmul 11014  2c2 12183  cz 12471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-neg 11350  df-2 12191  df-z 12472
This theorem is referenced by:  2zlidl  48224  2zrng0  48228  2zrngamnd  48231  2zrngacmnd  48232  2zrngmmgm  48236
  Copyright terms: Public domain W3C validator