Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0even | Structured version Visualization version GIF version |
Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
Ref | Expression |
---|---|
0even | ⊢ 0 ∈ 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12260 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 2cn 11978 | . . . 4 ⊢ 2 ∈ ℂ | |
3 | 0zd 12261 | . . . . 5 ⊢ (2 ∈ ℂ → 0 ∈ ℤ) | |
4 | oveq2 7263 | . . . . . . 7 ⊢ (𝑥 = 0 → (2 · 𝑥) = (2 · 0)) | |
5 | 4 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
7 | mul01 11084 | . . . . . 6 ⊢ (2 ∈ ℂ → (2 · 0) = 0) | |
8 | 7 | eqcomd 2744 | . . . . 5 ⊢ (2 ∈ ℂ → 0 = (2 · 0)) |
9 | 3, 6, 8 | rspcedvd 3555 | . . . 4 ⊢ (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)) |
10 | 2, 9 | ax-mp 5 | . . 3 ⊢ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥) |
11 | eqeq1 2742 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥))) | |
12 | 11 | rexbidv 3225 | . . . 4 ⊢ (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
13 | 12 | elrab 3617 | . . 3 ⊢ (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
14 | 1, 10, 13 | mpbir2an 707 | . 2 ⊢ 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
15 | 2zrng.e | . 2 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
16 | 14, 15 | eleqtrri 2838 | 1 ⊢ 0 ∈ 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 2c2 11958 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-neg 11138 df-2 11966 df-z 12250 |
This theorem is referenced by: 2zlidl 45380 2zrng0 45384 2zrngamnd 45387 2zrngacmnd 45388 2zrngmmgm 45392 |
Copyright terms: Public domain | W3C validator |