Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0even Structured version   Visualization version   GIF version

Theorem 0even 48198
Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
Assertion
Ref Expression
0even 0 ∈ 𝐸
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 0even
StepHypRef Expression
1 0z 12516 . . 3 0 ∈ ℤ
2 2cn 12237 . . . 4 2 ∈ ℂ
3 0zd 12517 . . . . 5 (2 ∈ ℂ → 0 ∈ ℤ)
4 oveq2 7377 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
54eqeq2d 2740 . . . . . 6 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
65adantl 481 . . . . 5 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
7 mul01 11329 . . . . . 6 (2 ∈ ℂ → (2 · 0) = 0)
87eqcomd 2735 . . . . 5 (2 ∈ ℂ → 0 = (2 · 0))
93, 6, 8rspcedvd 3587 . . . 4 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
102, 9ax-mp 5 . . 3 𝑥 ∈ ℤ 0 = (2 · 𝑥)
11 eqeq1 2733 . . . . 5 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
1211rexbidv 3157 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
1312elrab 3656 . . 3 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
141, 10, 13mpbir2an 711 . 2 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
15 2zrng.e . 2 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
1614, 15eleqtrri 2827 1 0 ∈ 𝐸
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  (class class class)co 7369  cc 11042  0cc0 11044   · cmul 11049  2c2 12217  cz 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-neg 11384  df-2 12225  df-z 12506
This theorem is referenced by:  2zlidl  48201  2zrng0  48205  2zrngamnd  48208  2zrngacmnd  48209  2zrngmmgm  48213
  Copyright terms: Public domain W3C validator