| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0even | Structured version Visualization version GIF version | ||
| Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| Ref | Expression |
|---|---|
| 0even | ⊢ 0 ∈ 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12482 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | 2cn 12203 | . . . 4 ⊢ 2 ∈ ℂ | |
| 3 | 0zd 12483 | . . . . 5 ⊢ (2 ∈ ℂ → 0 ∈ ℤ) | |
| 4 | oveq2 7357 | . . . . . . 7 ⊢ (𝑥 = 0 → (2 · 𝑥) = (2 · 0)) | |
| 5 | 4 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
| 7 | mul01 11295 | . . . . . 6 ⊢ (2 ∈ ℂ → (2 · 0) = 0) | |
| 8 | 7 | eqcomd 2735 | . . . . 5 ⊢ (2 ∈ ℂ → 0 = (2 · 0)) |
| 9 | 3, 6, 8 | rspcedvd 3579 | . . . 4 ⊢ (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)) |
| 10 | 2, 9 | ax-mp 5 | . . 3 ⊢ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥) |
| 11 | eqeq1 2733 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥))) | |
| 12 | 11 | rexbidv 3153 | . . . 4 ⊢ (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
| 13 | 12 | elrab 3648 | . . 3 ⊢ (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
| 14 | 1, 10, 13 | mpbir2an 711 | . 2 ⊢ 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 15 | 2zrng.e | . 2 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 16 | 14, 15 | eleqtrri 2827 | 1 ⊢ 0 ∈ 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3394 (class class class)co 7349 ℂcc 11007 0cc0 11009 · cmul 11014 2c2 12183 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-neg 11350 df-2 12191 df-z 12472 |
| This theorem is referenced by: 2zlidl 48224 2zrng0 48228 2zrngamnd 48231 2zrngacmnd 48232 2zrngmmgm 48236 |
| Copyright terms: Public domain | W3C validator |