![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0even | Structured version Visualization version GIF version |
Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
Ref | Expression |
---|---|
0even | ⊢ 0 ∈ 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12622 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 2cn 12339 | . . . 4 ⊢ 2 ∈ ℂ | |
3 | 0zd 12623 | . . . . 5 ⊢ (2 ∈ ℂ → 0 ∈ ℤ) | |
4 | oveq2 7439 | . . . . . . 7 ⊢ (𝑥 = 0 → (2 · 𝑥) = (2 · 0)) | |
5 | 4 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
7 | mul01 11438 | . . . . . 6 ⊢ (2 ∈ ℂ → (2 · 0) = 0) | |
8 | 7 | eqcomd 2741 | . . . . 5 ⊢ (2 ∈ ℂ → 0 = (2 · 0)) |
9 | 3, 6, 8 | rspcedvd 3624 | . . . 4 ⊢ (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)) |
10 | 2, 9 | ax-mp 5 | . . 3 ⊢ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥) |
11 | eqeq1 2739 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥))) | |
12 | 11 | rexbidv 3177 | . . . 4 ⊢ (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
13 | 12 | elrab 3695 | . . 3 ⊢ (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
14 | 1, 10, 13 | mpbir2an 711 | . 2 ⊢ 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
15 | 2zrng.e | . 2 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
16 | 14, 15 | eleqtrri 2838 | 1 ⊢ 0 ∈ 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 (class class class)co 7431 ℂcc 11151 0cc0 11153 · cmul 11158 2c2 12319 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-neg 11493 df-2 12327 df-z 12612 |
This theorem is referenced by: 2zlidl 48084 2zrng0 48088 2zrngamnd 48091 2zrngacmnd 48092 2zrngmmgm 48096 |
Copyright terms: Public domain | W3C validator |