Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0even Structured version   Visualization version   GIF version

Theorem 0even 48212
Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
Assertion
Ref Expression
0even 0 ∈ 𝐸
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 0even
StepHypRef Expression
1 0z 12599 . . 3 0 ∈ ℤ
2 2cn 12315 . . . 4 2 ∈ ℂ
3 0zd 12600 . . . . 5 (2 ∈ ℂ → 0 ∈ ℤ)
4 oveq2 7413 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
54eqeq2d 2746 . . . . . 6 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
65adantl 481 . . . . 5 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
7 mul01 11414 . . . . . 6 (2 ∈ ℂ → (2 · 0) = 0)
87eqcomd 2741 . . . . 5 (2 ∈ ℂ → 0 = (2 · 0))
93, 6, 8rspcedvd 3603 . . . 4 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
102, 9ax-mp 5 . . 3 𝑥 ∈ ℤ 0 = (2 · 𝑥)
11 eqeq1 2739 . . . . 5 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
1211rexbidv 3164 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
1312elrab 3671 . . 3 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
141, 10, 13mpbir2an 711 . 2 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
15 2zrng.e . 2 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
1614, 15eleqtrri 2833 1 0 ∈ 𝐸
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  (class class class)co 7405  cc 11127  0cc0 11129   · cmul 11134  2c2 12295  cz 12588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-neg 11469  df-2 12303  df-z 12589
This theorem is referenced by:  2zlidl  48215  2zrng0  48219  2zrngamnd  48222  2zrngacmnd  48223  2zrngmmgm  48227
  Copyright terms: Public domain W3C validator