![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0even | Structured version Visualization version GIF version |
Description: 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
Ref | Expression |
---|---|
0even | ⊢ 0 ∈ 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 2cn 12368 | . . . 4 ⊢ 2 ∈ ℂ | |
3 | 0zd 12651 | . . . . 5 ⊢ (2 ∈ ℂ → 0 ∈ ℤ) | |
4 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = 0 → (2 · 𝑥) = (2 · 0)) | |
5 | 4 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0))) |
7 | mul01 11469 | . . . . . 6 ⊢ (2 ∈ ℂ → (2 · 0) = 0) | |
8 | 7 | eqcomd 2746 | . . . . 5 ⊢ (2 ∈ ℂ → 0 = (2 · 0)) |
9 | 3, 6, 8 | rspcedvd 3637 | . . . 4 ⊢ (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)) |
10 | 2, 9 | ax-mp 5 | . . 3 ⊢ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥) |
11 | eqeq1 2744 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥))) | |
12 | 11 | rexbidv 3185 | . . . 4 ⊢ (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
13 | 12 | elrab 3708 | . . 3 ⊢ (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))) |
14 | 1, 10, 13 | mpbir2an 710 | . 2 ⊢ 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
15 | 2zrng.e | . 2 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
16 | 14, 15 | eleqtrri 2843 | 1 ⊢ 0 ∈ 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 (class class class)co 7448 ℂcc 11182 0cc0 11184 · cmul 11189 2c2 12348 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-neg 11523 df-2 12356 df-z 12640 |
This theorem is referenced by: 2zlidl 47963 2zrng0 47967 2zrngamnd 47970 2zrngacmnd 47971 2zrngmmgm 47975 |
Copyright terms: Public domain | W3C validator |