MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6 Structured version   Visualization version   GIF version

Theorem ac6 10220
Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set 𝐵, where 𝜑 depends on 𝑥 (the natural number) and 𝑦 (to specify a member of 𝐵). A stronger version of this theorem, ac6s 10224, allows 𝐵 to be a proper class. (Contributed by NM, 18-Oct-1999.) (Revised by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ac6.1 𝐴 ∈ V
ac6.2 𝐵 ∈ V
ac6.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6
StepHypRef Expression
1 ac6.1 . 2 𝐴 ∈ V
2 ac6.2 . . . 4 𝐵 ∈ V
3 ssrab2 4017 . . . . . 6 {𝑦𝐵𝜑} ⊆ 𝐵
43rgenw 3077 . . . . 5 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
5 iunss 4979 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵)
64, 5mpbir 230 . . . 4 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
72, 6ssexi 5249 . . 3 𝑥𝐴 {𝑦𝐵𝜑} ∈ V
8 numth3 10210 . . 3 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
97, 8ax-mp 5 . 2 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
10 ac6.3 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
1110ac6num 10219 . 2 ((𝐴 ∈ V ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
121, 9, 11mp3an12 1449 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wex 1785  wcel 2109  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  wss 3891   ciun 4929  dom cdm 5588  wf 6426  cfv 6430  cardccrd 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-ac2 10203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-en 8708  df-card 9681  df-ac 9856
This theorem is referenced by:  ac6c4  10221  ac6s  10224  wlkiswwlksupgr2  28221
  Copyright terms: Public domain W3C validator