MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6 Structured version   Visualization version   GIF version

Theorem ac6 9891
Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set 𝐵, where 𝜑 depends on 𝑥 (the natural number) and 𝑦 (to specify a member of 𝐵). A stronger version of this theorem, ac6s 9895, allows 𝐵 to be a proper class. (Contributed by NM, 18-Oct-1999.) (Revised by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ac6.1 𝐴 ∈ V
ac6.2 𝐵 ∈ V
ac6.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6
StepHypRef Expression
1 ac6.1 . 2 𝐴 ∈ V
2 ac6.2 . . . 4 𝐵 ∈ V
3 ssrab2 4007 . . . . . 6 {𝑦𝐵𝜑} ⊆ 𝐵
43rgenw 3118 . . . . 5 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
5 iunss 4932 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵)
64, 5mpbir 234 . . . 4 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
72, 6ssexi 5190 . . 3 𝑥𝐴 {𝑦𝐵𝜑} ∈ V
8 numth3 9881 . . 3 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
97, 8ax-mp 5 . 2 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
10 ac6.3 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
1110ac6num 9890 . 2 ((𝐴 ∈ V ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
121, 9, 11mp3an12 1448 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881   ciun 4881  dom cdm 5519  wf 6320  cfv 6324  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-wrecs 7930  df-recs 7991  df-en 8493  df-card 9352  df-ac 9527
This theorem is referenced by:  ac6c4  9892  ac6s  9895  wlkiswwlksupgr2  27663
  Copyright terms: Public domain W3C validator