MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6 Structured version   Visualization version   GIF version

Theorem ac6 10505
Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set 𝐵, where 𝜑 depends on 𝑥 (the natural number) and 𝑦 (to specify a member of 𝐵). A stronger version of this theorem, ac6s 10509, allows 𝐵 to be a proper class. (Contributed by NM, 18-Oct-1999.) (Revised by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ac6.1 𝐴 ∈ V
ac6.2 𝐵 ∈ V
ac6.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6
StepHypRef Expression
1 ac6.1 . 2 𝐴 ∈ V
2 ac6.2 . . . 4 𝐵 ∈ V
3 ssrab2 4073 . . . . . 6 {𝑦𝐵𝜑} ⊆ 𝐵
43rgenw 3054 . . . . 5 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
5 iunss 5049 . . . . 5 ( 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵)
64, 5mpbir 230 . . . 4 𝑥𝐴 {𝑦𝐵𝜑} ⊆ 𝐵
72, 6ssexi 5323 . . 3 𝑥𝐴 {𝑦𝐵𝜑} ∈ V
8 numth3 10495 . . 3 ( 𝑥𝐴 {𝑦𝐵𝜑} ∈ V → 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card)
97, 8ax-mp 5 . 2 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card
10 ac6.3 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
1110ac6num 10504 . 2 ((𝐴 ∈ V ∧ 𝑥𝐴 {𝑦𝐵𝜑} ∈ dom card ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
121, 9, 11mp3an12 1447 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  wss 3944   ciun 4997  dom cdm 5678  wf 6545  cfv 6549  cardccrd 9960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-ac2 10488
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-en 8965  df-card 9964  df-ac 10141
This theorem is referenced by:  ac6c4  10506  ac6s  10509  wlkiswwlksupgr2  29760
  Copyright terms: Public domain W3C validator