MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s Structured version   Visualization version   GIF version

Theorem ac6s 10375
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 9786, we derive this strong version of ac6 10371 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s.1 . . 3 𝐴 ∈ V
21bnd2 9786 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
3 vex 3440 . . . . 5 𝑧 ∈ V
4 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
51, 3, 4ac6 10371 . . . 4 (∀𝑥𝐴𝑦𝑧 𝜑 → ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓))
65anim2i 617 . . 3 ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) → (𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)))
76eximi 1836 . 2 (∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) → ∃𝑧(𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)))
8 fss 6667 . . . . . . 7 ((𝑓:𝐴𝑧𝑧𝐵) → 𝑓:𝐴𝐵)
98expcom 413 . . . . . 6 (𝑧𝐵 → (𝑓:𝐴𝑧𝑓:𝐴𝐵))
109anim1d 611 . . . . 5 (𝑧𝐵 → ((𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓) → (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
1110eximdv 1918 . . . 4 (𝑧𝐵 → (∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
1211imp 406 . . 3 ((𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
1312exlimiv 1931 . 2 (∃𝑧(𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
142, 7, 133syl 18 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-en 8870  df-r1 9657  df-rank 9658  df-card 9832  df-ac 10007
This theorem is referenced by:  ac6n  10376  ac6s2  10377  ac6sg  10379  ac6sf  10380  nmounbseqiALT  30758  ac6sf2  32605  acunirnmpt2  32642  fedgmul  33644  pibt2  37461
  Copyright terms: Public domain W3C validator