MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s Structured version   Visualization version   GIF version

Theorem ac6s 9895
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 9310, we derive this strong version of ac6 9891 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s.1 . . 3 𝐴 ∈ V
21bnd2 9310 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
3 vex 3472 . . . . 5 𝑧 ∈ V
4 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
51, 3, 4ac6 9891 . . . 4 (∀𝑥𝐴𝑦𝑧 𝜑 → ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓))
65anim2i 619 . . 3 ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) → (𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)))
76eximi 1836 . 2 (∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) → ∃𝑧(𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)))
8 fss 6508 . . . . . . 7 ((𝑓:𝐴𝑧𝑧𝐵) → 𝑓:𝐴𝐵)
98expcom 417 . . . . . 6 (𝑧𝐵 → (𝑓:𝐴𝑧𝑓:𝐴𝐵))
109anim1d 613 . . . . 5 (𝑧𝐵 → ((𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓) → (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
1110eximdv 1918 . . . 4 (𝑧𝐵 → (∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
1211imp 410 . . 3 ((𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
1312exlimiv 1931 . 2 (∃𝑧(𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
142, 7, 133syl 18 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2114  wral 3130  wrex 3131  Vcvv 3469  wss 3908  wf 6330  cfv 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-reg 9044  ax-inf2 9092  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-en 8497  df-r1 9181  df-rank 9182  df-card 9356  df-ac 9531
This theorem is referenced by:  ac6n  9896  ac6s2  9897  ac6sg  9899  ac6sf  9900  nmounbseqiALT  28559  ac6sf2  30378  acunirnmpt2  30413  fedgmul  31084  pibt2  34795
  Copyright terms: Public domain W3C validator