|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ac6s | Structured version Visualization version GIF version | ||
| Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 9934, we derive this strong version of ac6 10521 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.) | 
| Ref | Expression | 
|---|---|
| ac6s.1 | ⊢ 𝐴 ∈ V | 
| ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| ac6s | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ac6s.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | bnd2 9934 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) | 
| 3 | vex 3483 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 4 | ac6s.2 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 5 | 1, 3, 4 | ac6 10521 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 → ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | 
| 6 | 5 | anim2i 617 | . . 3 ⊢ ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) → (𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | 
| 7 | 6 | eximi 1834 | . 2 ⊢ (∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | 
| 8 | fss 6751 | . . . . . . 7 ⊢ ((𝑓:𝐴⟶𝑧 ∧ 𝑧 ⊆ 𝐵) → 𝑓:𝐴⟶𝐵) | |
| 9 | 8 | expcom 413 | . . . . . 6 ⊢ (𝑧 ⊆ 𝐵 → (𝑓:𝐴⟶𝑧 → 𝑓:𝐴⟶𝐵)) | 
| 10 | 9 | anim1d 611 | . . . . 5 ⊢ (𝑧 ⊆ 𝐵 → ((𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓) → (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | 
| 11 | 10 | eximdv 1916 | . . . 4 ⊢ (𝑧 ⊆ 𝐵 → (∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | 
| 12 | 11 | imp 406 | . . 3 ⊢ ((𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | 
| 13 | 12 | exlimiv 1929 | . 2 ⊢ (∃𝑧(𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | 
| 14 | 2, 7, 13 | 3syl 18 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ⊆ wss 3950 ⟶wf 6556 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 ax-ac2 10504 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-en 8987 df-r1 9805 df-rank 9806 df-card 9980 df-ac 10157 | 
| This theorem is referenced by: ac6n 10526 ac6s2 10527 ac6sg 10529 ac6sf 10530 nmounbseqiALT 30798 ac6sf2 32635 acunirnmpt2 32671 fedgmul 33683 pibt2 37419 | 
| Copyright terms: Public domain | W3C validator |