MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s Structured version   Visualization version   GIF version

Theorem ac6s 10503
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 9912, we derive this strong version of ac6 10499 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s.1 . . 3 𝐴 ∈ V
21bnd2 9912 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
3 vex 3468 . . . . 5 𝑧 ∈ V
4 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
51, 3, 4ac6 10499 . . . 4 (∀𝑥𝐴𝑦𝑧 𝜑 → ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓))
65anim2i 617 . . 3 ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) → (𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)))
76eximi 1835 . 2 (∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) → ∃𝑧(𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)))
8 fss 6727 . . . . . . 7 ((𝑓:𝐴𝑧𝑧𝐵) → 𝑓:𝐴𝐵)
98expcom 413 . . . . . 6 (𝑧𝐵 → (𝑓:𝐴𝑧𝑓:𝐴𝐵))
109anim1d 611 . . . . 5 (𝑧𝐵 → ((𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓) → (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
1110eximdv 1917 . . . 4 (𝑧𝐵 → (∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
1211imp 406 . . 3 ((𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
1312exlimiv 1930 . 2 (∃𝑧(𝑧𝐵 ∧ ∃𝑓(𝑓:𝐴𝑧 ∧ ∀𝑥𝐴 𝜓)) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
142, 7, 133syl 18 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  wss 3931  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-en 8965  df-r1 9783  df-rank 9784  df-card 9958  df-ac 10135
This theorem is referenced by:  ac6n  10504  ac6s2  10505  ac6sg  10507  ac6sf  10508  nmounbseqiALT  30764  ac6sf2  32607  acunirnmpt2  32643  fedgmul  33676  pibt2  37440
  Copyright terms: Public domain W3C validator