![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6s | Structured version Visualization version GIF version |
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 9910, we derive this strong version of ac6 10497 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
ac6s.1 | ⊢ 𝐴 ∈ V |
ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6s | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | bnd2 9910 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
3 | vex 3474 | . . . . 5 ⊢ 𝑧 ∈ V | |
4 | ac6s.2 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
5 | 1, 3, 4 | ac6 10497 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 → ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | 5 | anim2i 616 | . . 3 ⊢ ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) → (𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
7 | 6 | eximi 1830 | . 2 ⊢ (∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
8 | fss 6733 | . . . . . . 7 ⊢ ((𝑓:𝐴⟶𝑧 ∧ 𝑧 ⊆ 𝐵) → 𝑓:𝐴⟶𝐵) | |
9 | 8 | expcom 413 | . . . . . 6 ⊢ (𝑧 ⊆ 𝐵 → (𝑓:𝐴⟶𝑧 → 𝑓:𝐴⟶𝐵)) |
10 | 9 | anim1d 610 | . . . . 5 ⊢ (𝑧 ⊆ 𝐵 → ((𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓) → (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
11 | 10 | eximdv 1913 | . . . 4 ⊢ (𝑧 ⊆ 𝐵 → (∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
12 | 11 | imp 406 | . . 3 ⊢ ((𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
13 | 12 | exlimiv 1926 | . 2 ⊢ (∃𝑧(𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
14 | 2, 7, 13 | 3syl 18 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 Vcvv 3470 ⊆ wss 3945 ⟶wf 6538 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-reg 9609 ax-inf2 9658 ax-ac2 10480 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-en 8958 df-r1 9781 df-rank 9782 df-card 9956 df-ac 10133 |
This theorem is referenced by: ac6n 10502 ac6s2 10503 ac6sg 10505 ac6sf 10506 nmounbseqiALT 30581 ac6sf2 32403 acunirnmpt2 32439 fedgmul 33319 pibt2 36890 |
Copyright terms: Public domain | W3C validator |