![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6s | Structured version Visualization version GIF version |
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 9884, we derive this strong version of ac6 10471 that doesn't require 𝐵 to be a set. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
ac6s.1 | ⊢ 𝐴 ∈ V |
ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6s | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | bnd2 9884 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑)) |
3 | vex 3478 | . . . . 5 ⊢ 𝑧 ∈ V | |
4 | ac6s.2 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
5 | 1, 3, 4 | ac6 10471 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑 → ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | 5 | anim2i 617 | . . 3 ⊢ ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) → (𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
7 | 6 | eximi 1837 | . 2 ⊢ (∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜑) → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
8 | fss 6731 | . . . . . . 7 ⊢ ((𝑓:𝐴⟶𝑧 ∧ 𝑧 ⊆ 𝐵) → 𝑓:𝐴⟶𝐵) | |
9 | 8 | expcom 414 | . . . . . 6 ⊢ (𝑧 ⊆ 𝐵 → (𝑓:𝐴⟶𝑧 → 𝑓:𝐴⟶𝐵)) |
10 | 9 | anim1d 611 | . . . . 5 ⊢ (𝑧 ⊆ 𝐵 → ((𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓) → (𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
11 | 10 | eximdv 1920 | . . . 4 ⊢ (𝑧 ⊆ 𝐵 → (∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
12 | 11 | imp 407 | . . 3 ⊢ ((𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
13 | 12 | exlimiv 1933 | . 2 ⊢ (∃𝑧(𝑧 ⊆ 𝐵 ∧ ∃𝑓(𝑓:𝐴⟶𝑧 ∧ ∀𝑥 ∈ 𝐴 𝜓)) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
14 | 2, 7, 13 | 3syl 18 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3947 ⟶wf 6536 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-reg 9583 ax-inf2 9632 ax-ac2 10454 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-en 8936 df-r1 9755 df-rank 9756 df-card 9930 df-ac 10107 |
This theorem is referenced by: ac6n 10476 ac6s2 10477 ac6sg 10479 ac6sf 10480 nmounbseqiALT 30018 ac6sf2 31836 acunirnmpt2 31872 fedgmul 32704 pibt2 36286 |
Copyright terms: Public domain | W3C validator |