MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsss Structured version   Visualization version   GIF version

Theorem bitsss 16450
Description: The set of bits of an integer is a subset of 0. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsss (bits‘𝑁) ⊆ ℕ0

Proof of Theorem bitsss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsval 16448 . . 3 (𝑚 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
21simp2bi 1146 . 2 (𝑚 ∈ (bits‘𝑁) → 𝑚 ∈ ℕ0)
32ssriv 3967 1 (bits‘𝑁) ⊆ ℕ0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410   / cdiv 11899  2c2 12300  0cn0 12506  cz 12593  cfl 13812  cexp 14084  cdvds 16277  bitscbits 16443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-n0 12507  df-bits 16446
This theorem is referenced by:  bitsinv2  16467  bitsf1ocnv  16468  sadaddlem  16490  sadadd  16491  bitsres  16497  bitsshft  16499  smumullem  16516  smumul  16517  eulerpartlemgc  34399  eulerpartlemgvv  34413  eulerpartlemgh  34415  eulerpartlemgs2  34417
  Copyright terms: Public domain W3C validator