MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitscmp Structured version   Visualization version   GIF version

Theorem bitscmp 15789
Description: The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 15788, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitscmp (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))

Proof of Theorem bitscmp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsval2 15776 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 2z 12017 . . . . . . . . . 10 2 ∈ ℤ
32a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
4 simpl 485 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℤ)
54zred 12090 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℝ)
6 2nn 11713 . . . . . . . . . . . . 13 2 ∈ ℕ
76a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℕ)
8 simpr 487 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
97, 8nnexpcld 13609 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
105, 9nndivred 11694 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) ∈ ℝ)
1110flcld 13171 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
12 dvdsnegb 15629 . . . . . . . . 9 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
133, 11, 12syl2anc 586 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1413notbid 320 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1511znegcld 12092 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
16 oddm1even 15694 . . . . . . . . 9 (-(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
1715, 16syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
18 flltp1 13173 . . . . . . . . . . . . . . . 16 ((𝑁 / (2↑𝑚)) ∈ ℝ → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
1910, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
2011zred 12090 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
21 1red 10644 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
2220, 21readdcld 10672 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) + 1) ∈ ℝ)
2310, 22ltnegd 11220 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1) ↔ -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚))))
2419, 23mpbid 234 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚)))
2520recnd 10671 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
2621recnd 10671 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26negdi2d 11013 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
285recnd 10671 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℂ)
299nncnd 11656 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
309nnne0d 11690 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
3128, 29, 30divnegd 11431 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) = (-𝑁 / (2↑𝑚)))
3224, 27, 313brtr3d 5099 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚)))
33 1zzd 12016 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
3415, 33zsubcld 12095 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ)
3534zred 12090 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℝ)
365renegcld 11069 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℝ)
379nnrpd 12432 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℝ+)
3835, 36, 37ltmuldivd 12481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚))))
3932, 38mpbird 259 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁)
409nnzd 12089 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
4134, 40zmulcld 12096 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ)
424znegcld 12092 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℤ)
43 zltlem1 12038 . . . . . . . . . . . . 13 ((((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ ∧ -𝑁 ∈ ℤ) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4441, 42, 43syl2anc 586 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4539, 44mpbid 234 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1))
4636, 21resubcld 11070 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) ∈ ℝ)
4735, 46, 37lemuldivd 12483 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1) ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚))))
4845, 47mpbid 234 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)))
49 flle 13172 . . . . . . . . . . . . . . . . 17 ((𝑁 / (2↑𝑚)) ∈ ℝ → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5010, 49syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5120, 10lenegd 11221 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)) ↔ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))))
5250, 51mpbid 234 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5331, 52eqbrtrrd 5092 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5420renegcld 11069 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
5536, 54, 37ledivmuld 12487 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))) ↔ -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5653, 55mpbid 234 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
5740, 15zmulcld 12096 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ)
58 zlem1lt 12037 . . . . . . . . . . . . . 14 ((-𝑁 ∈ ℤ ∧ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5942, 57, 58syl2anc 586 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6056, 59mpbid 234 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
6146, 54, 37ltdivmuld 12485 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6260, 61mpbird 259 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))))
6325negcld 10986 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
6463, 26npcand 11003 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1) = -(⌊‘(𝑁 / (2↑𝑚))))
6562, 64breqtrrd 5096 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))
6646, 9nndivred 11694 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ)
67 flbi 13189 . . . . . . . . . . 11 ((((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ ∧ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6866, 34, 67syl2anc 586 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6948, 65, 68mpbir2and 711 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
7069breq2d 5080 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
7117, 70bitr4d 284 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
721, 14, 713bitrd 307 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7372notbid 320 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7473pm5.32da 581 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
75 znegcl 12020 . . . . . 6 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
76 1zzd 12016 . . . . . 6 (𝑁 ∈ ℤ → 1 ∈ ℤ)
7775, 76zsubcld 12095 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
7877biantrurd 535 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
7974, 78bitrd 281 . . 3 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
80 eldif 3948 . . 3 (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)))
81 bitsval 15775 . . . 4 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
82 3anass 1091 . . . 4 (((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8381, 82bitri 277 . . 3 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8479, 80, 833bitr4g 316 . 2 (𝑁 ∈ ℤ → (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ 𝑚 ∈ (bits‘(-𝑁 − 1))))
8584eqrdv 2821 1 (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cdif 3935   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cfl 13163  cexp 13432  cdvds 15609  bitscbits 15770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-dvds 15610  df-bits 15773
This theorem is referenced by:  m1bits  15791  bitsf1  15797
  Copyright terms: Public domain W3C validator