Step | Hyp | Ref
| Expression |
1 | | bitsval2 16141 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑚 ∈
(bits‘𝑁) ↔ ¬
2 ∥ (⌊‘(𝑁
/ (2↑𝑚))))) |
2 | | 2z 12361 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
3 | 2 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 2 ∈ ℤ) |
4 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
5 | 4 | zred 12435 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑁 ∈
ℝ) |
6 | | 2nn 12055 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
7 | 6 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 2 ∈ ℕ) |
8 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑚 ∈
ℕ0) |
9 | 7, 8 | nnexpcld 13969 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℕ) |
10 | 5, 9 | nndivred 12036 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑁 / (2↑𝑚)) ∈
ℝ) |
11 | 10 | flcld 13527 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ∈
ℤ) |
12 | | dvdsnegb 15992 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ) → (2 ∥
(⌊‘(𝑁 /
(2↑𝑚))) ↔ 2
∥ -(⌊‘(𝑁
/ (2↑𝑚))))) |
13 | 3, 11, 12 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))))) |
14 | 13 | notbid 318 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥
-(⌊‘(𝑁 /
(2↑𝑚))))) |
15 | 11 | znegcld 12437 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(⌊‘(𝑁 /
(2↑𝑚))) ∈
ℤ) |
16 | | oddm1even 16061 |
. . . . . . . . 9
⊢
(-(⌊‘(𝑁
/ (2↑𝑚))) ∈
ℤ → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1))) |
17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1))) |
18 | | flltp1 13529 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 / (2↑𝑚)) ∈ ℝ → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1)) |
19 | 10, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1)) |
20 | 11 | zred 12435 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ∈
ℝ) |
21 | | 1red 10985 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 1 ∈ ℝ) |
22 | 20, 21 | readdcld 11013 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((⌊‘(𝑁 /
(2↑𝑚))) + 1) ∈
ℝ) |
23 | 10, 22 | ltnegd 11562 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1) ↔ -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚)))) |
24 | 19, 23 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -((⌊‘(𝑁
/ (2↑𝑚))) + 1) <
-(𝑁 / (2↑𝑚))) |
25 | 20 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ∈
ℂ) |
26 | 21 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 1 ∈ ℂ) |
27 | 25, 26 | negdi2d 11355 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -((⌊‘(𝑁
/ (2↑𝑚))) + 1) =
(-(⌊‘(𝑁 /
(2↑𝑚))) −
1)) |
28 | 5 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
29 | 9 | nncnd 11998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℂ) |
30 | 9 | nnne0d 12032 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ≠
0) |
31 | 28, 29, 30 | divnegd 11773 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(𝑁 / (2↑𝑚)) = (-𝑁 / (2↑𝑚))) |
32 | 24, 27, 31 | 3brtr3d 5106 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
< (-𝑁 / (2↑𝑚))) |
33 | | 1zzd 12360 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ 1 ∈ ℤ) |
34 | 15, 33 | zsubcld 12440 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
∈ ℤ) |
35 | 34 | zred 12435 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
∈ ℝ) |
36 | 5 | renegcld 11411 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -𝑁 ∈
ℝ) |
37 | 9 | nnrpd 12779 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℝ+) |
38 | 35, 36, 37 | ltmuldivd 12828 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚)))) |
39 | 32, 38 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
· (2↑𝑚)) <
-𝑁) |
40 | 9 | nnzd 12434 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2↑𝑚) ∈
ℤ) |
41 | 34, 40 | zmulcld 12441 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
· (2↑𝑚)) ∈
ℤ) |
42 | 4 | znegcld 12437 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -𝑁 ∈
ℤ) |
43 | | zltlem1 12382 |
. . . . . . . . . . . . 13
⊢
((((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ ∧ -𝑁 ∈ ℤ) →
(((-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
· (2↑𝑚)) <
-𝑁 ↔
((-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
· (2↑𝑚)) ≤
(-𝑁 −
1))) |
44 | 41, 42, 43 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1))) |
45 | 39, 44 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
· (2↑𝑚)) ≤
(-𝑁 −
1)) |
46 | 36, 21 | resubcld 11412 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 − 1)
∈ ℝ) |
47 | 35, 46, 37 | lemuldivd 12830 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1) ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)))) |
48 | 45, 47 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
≤ ((-𝑁 − 1) /
(2↑𝑚))) |
49 | | flle 13528 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 / (2↑𝑚)) ∈ ℝ →
(⌊‘(𝑁 /
(2↑𝑚))) ≤ (𝑁 / (2↑𝑚))) |
50 | 10, 49 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘(𝑁 /
(2↑𝑚))) ≤ (𝑁 / (2↑𝑚))) |
51 | 20, 10 | lenegd 11563 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((⌊‘(𝑁 /
(2↑𝑚))) ≤ (𝑁 / (2↑𝑚)) ↔ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))) |
52 | 50, 51 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))) |
53 | 31, 52 | eqbrtrrd 5099 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))) |
54 | 20 | renegcld 11411 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(⌊‘(𝑁 /
(2↑𝑚))) ∈
ℝ) |
55 | 36, 54, 37 | ledivmuld 12834 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))) ↔ -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))) |
56 | 53, 55 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -𝑁 ≤
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚))))) |
57 | 40, 15 | zmulcld 12441 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ∈
ℤ) |
58 | | zlem1lt 12381 |
. . . . . . . . . . . . . 14
⊢ ((-𝑁 ∈ ℤ ∧
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ∈
ℤ) → (-𝑁 ≤
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ↔
(-𝑁 − 1) <
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))))) |
59 | 42, 57, 58 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 ≤
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))) ↔
(-𝑁 − 1) <
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))))) |
60 | 56, 59 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (-𝑁 − 1) <
((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚))))) |
61 | 46, 54, 37 | ltdivmuld 12832 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (((-𝑁 − 1) /
(2↑𝑚)) <
-(⌊‘(𝑁 /
(2↑𝑚))) ↔ (-𝑁 − 1) < ((2↑𝑚) ·
-(⌊‘(𝑁 /
(2↑𝑚)))))) |
62 | 60, 61 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 − 1) /
(2↑𝑚)) <
-(⌊‘(𝑁 /
(2↑𝑚)))) |
63 | 25 | negcld 11328 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ -(⌊‘(𝑁 /
(2↑𝑚))) ∈
ℂ) |
64 | 63, 26 | npcand 11345 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1) +
1) = -(⌊‘(𝑁 /
(2↑𝑚)))) |
65 | 62, 64 | breqtrrd 5103 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 − 1) /
(2↑𝑚)) <
((-(⌊‘(𝑁 /
(2↑𝑚))) − 1) +
1)) |
66 | 46, 9 | nndivred 12036 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((-𝑁 − 1) /
(2↑𝑚)) ∈
ℝ) |
67 | | flbi 13545 |
. . . . . . . . . . 11
⊢
((((-𝑁 − 1) /
(2↑𝑚)) ∈ ℝ
∧ (-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
∈ ℤ) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔
((-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
≤ ((-𝑁 − 1) /
(2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1)))) |
68 | 66, 34, 67 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ ((⌊‘((-𝑁
− 1) / (2↑𝑚))) =
(-(⌊‘(𝑁 /
(2↑𝑚))) − 1)
↔ ((-(⌊‘(𝑁
/ (2↑𝑚))) − 1)
≤ ((-𝑁 − 1) /
(2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1)))) |
69 | 48, 65, 68 | mpbir2and 710 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (⌊‘((-𝑁
− 1) / (2↑𝑚))) =
(-(⌊‘(𝑁 /
(2↑𝑚))) −
1)) |
70 | 69 | breq2d 5087 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1))) |
71 | 17, 70 | bitr4d 281 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))) |
72 | 1, 14, 71 | 3bitrd 305 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (𝑚 ∈
(bits‘𝑁) ↔ 2
∥ (⌊‘((-𝑁
− 1) / (2↑𝑚))))) |
73 | 72 | notbid 318 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0)
→ (¬ 𝑚 ∈
(bits‘𝑁) ↔ ¬
2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))) |
74 | 73 | pm5.32da 579 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0
∧ ¬ 𝑚 ∈
(bits‘𝑁)) ↔
(𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))) |
75 | | znegcl 12364 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
76 | | 1zzd 12360 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 1 ∈
ℤ) |
77 | 75, 76 | zsubcld 12440 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (-𝑁 − 1) ∈
ℤ) |
78 | 77 | biantrurd 533 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0
∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0
∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))) |
79 | 74, 78 | bitrd 278 |
. . 3
⊢ (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0
∧ ¬ 𝑚 ∈
(bits‘𝑁)) ↔
((-𝑁 − 1) ∈
ℤ ∧ (𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))) |
80 | | eldif 3898 |
. . 3
⊢ (𝑚 ∈ (ℕ0
∖ (bits‘𝑁))
↔ (𝑚 ∈
ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁))) |
81 | | bitsval 16140 |
. . . 4
⊢ (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧
𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))) |
82 | | 3anass 1094 |
. . . 4
⊢ (((-𝑁 − 1) ∈ ℤ ∧
𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0
∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))) |
83 | 81, 82 | bitri 274 |
. . 3
⊢ (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧
(𝑚 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))) |
84 | 79, 80, 83 | 3bitr4g 314 |
. 2
⊢ (𝑁 ∈ ℤ → (𝑚 ∈ (ℕ0
∖ (bits‘𝑁))
↔ 𝑚 ∈
(bits‘(-𝑁 −
1)))) |
85 | 84 | eqrdv 2737 |
1
⊢ (𝑁 ∈ ℤ →
(ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1))) |