MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitscmp Structured version   Visualization version   GIF version

Theorem bitscmp 16416
Description: The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 16415, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitscmp (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))

Proof of Theorem bitscmp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsval2 16403 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 2z 12627 . . . . . . . . . 10 2 ∈ ℤ
32a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
4 simpl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℤ)
54zred 12699 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℝ)
6 2nn 12318 . . . . . . . . . . . . 13 2 ∈ ℕ
76a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℕ)
8 simpr 483 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
97, 8nnexpcld 14243 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
105, 9nndivred 12299 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) ∈ ℝ)
1110flcld 13799 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
12 dvdsnegb 16254 . . . . . . . . 9 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
133, 11, 12syl2anc 582 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1413notbid 317 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1511znegcld 12701 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
16 oddm1even 16323 . . . . . . . . 9 (-(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
1715, 16syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
18 flltp1 13801 . . . . . . . . . . . . . . . 16 ((𝑁 / (2↑𝑚)) ∈ ℝ → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
1910, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
2011zred 12699 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
21 1red 11247 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
2220, 21readdcld 11275 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) + 1) ∈ ℝ)
2310, 22ltnegd 11824 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1) ↔ -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚))))
2419, 23mpbid 231 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚)))
2520recnd 11274 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
2621recnd 11274 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26negdi2d 11617 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
285recnd 11274 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℂ)
299nncnd 12261 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
309nnne0d 12295 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
3128, 29, 30divnegd 12036 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) = (-𝑁 / (2↑𝑚)))
3224, 27, 313brtr3d 5180 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚)))
33 1zzd 12626 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
3415, 33zsubcld 12704 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ)
3534zred 12699 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℝ)
365renegcld 11673 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℝ)
379nnrpd 13049 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℝ+)
3835, 36, 37ltmuldivd 13098 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚))))
3932, 38mpbird 256 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁)
409nnzd 12618 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
4134, 40zmulcld 12705 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ)
424znegcld 12701 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℤ)
43 zltlem1 12648 . . . . . . . . . . . . 13 ((((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ ∧ -𝑁 ∈ ℤ) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4441, 42, 43syl2anc 582 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4539, 44mpbid 231 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1))
4636, 21resubcld 11674 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) ∈ ℝ)
4735, 46, 37lemuldivd 13100 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1) ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚))))
4845, 47mpbid 231 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)))
49 flle 13800 . . . . . . . . . . . . . . . . 17 ((𝑁 / (2↑𝑚)) ∈ ℝ → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5010, 49syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5120, 10lenegd 11825 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)) ↔ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))))
5250, 51mpbid 231 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5331, 52eqbrtrrd 5173 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5420renegcld 11673 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
5536, 54, 37ledivmuld 13104 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))) ↔ -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5653, 55mpbid 231 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
5740, 15zmulcld 12705 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ)
58 zlem1lt 12647 . . . . . . . . . . . . . 14 ((-𝑁 ∈ ℤ ∧ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5942, 57, 58syl2anc 582 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6056, 59mpbid 231 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
6146, 54, 37ltdivmuld 13102 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6260, 61mpbird 256 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))))
6325negcld 11590 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
6463, 26npcand 11607 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1) = -(⌊‘(𝑁 / (2↑𝑚))))
6562, 64breqtrrd 5177 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))
6646, 9nndivred 12299 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ)
67 flbi 13817 . . . . . . . . . . 11 ((((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ ∧ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6866, 34, 67syl2anc 582 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6948, 65, 68mpbir2and 711 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
7069breq2d 5161 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
7117, 70bitr4d 281 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
721, 14, 713bitrd 304 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7372notbid 317 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7473pm5.32da 577 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
75 znegcl 12630 . . . . . 6 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
76 1zzd 12626 . . . . . 6 (𝑁 ∈ ℤ → 1 ∈ ℤ)
7775, 76zsubcld 12704 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
7877biantrurd 531 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
7974, 78bitrd 278 . . 3 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
80 eldif 3954 . . 3 (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)))
81 bitsval 16402 . . . 4 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
82 3anass 1092 . . . 4 (((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8381, 82bitri 274 . . 3 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8479, 80, 833bitr4g 313 . 2 (𝑁 ∈ ℤ → (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ 𝑚 ∈ (bits‘(-𝑁 − 1))))
8584eqrdv 2723 1 (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cdif 3941   class class class wbr 5149  cfv 6549  (class class class)co 7419  cr 11139  1c1 11141   + caddc 11143   · cmul 11145   < clt 11280  cle 11281  cmin 11476  -cneg 11477   / cdiv 11903  cn 12245  2c2 12300  0cn0 12505  cz 12591  cfl 13791  cexp 14062  cdvds 16234  bitscbits 16397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fl 13793  df-seq 14003  df-exp 14063  df-dvds 16235  df-bits 16400
This theorem is referenced by:  m1bits  16418  bitsf1  16424
  Copyright terms: Public domain W3C validator