MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitscmp Structured version   Visualization version   GIF version

Theorem bitscmp 16367
Description: The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 16366, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitscmp (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))

Proof of Theorem bitscmp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsval2 16354 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 2z 12525 . . . . . . . . . 10 2 ∈ ℤ
32a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
4 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℤ)
54zred 12598 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℝ)
6 2nn 12219 . . . . . . . . . . . . 13 2 ∈ ℕ
76a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℕ)
8 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
97, 8nnexpcld 14170 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
105, 9nndivred 12200 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) ∈ ℝ)
1110flcld 13720 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
12 dvdsnegb 16202 . . . . . . . . 9 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
133, 11, 12syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1413notbid 318 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1511znegcld 12600 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
16 oddm1even 16272 . . . . . . . . 9 (-(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
1715, 16syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
18 flltp1 13722 . . . . . . . . . . . . . . . 16 ((𝑁 / (2↑𝑚)) ∈ ℝ → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
1910, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
2011zred 12598 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
21 1red 11135 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
2220, 21readdcld 11163 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) + 1) ∈ ℝ)
2310, 22ltnegd 11716 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1) ↔ -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚))))
2419, 23mpbid 232 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚)))
2520recnd 11162 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
2621recnd 11162 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26negdi2d 11507 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
285recnd 11162 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℂ)
299nncnd 12162 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
309nnne0d 12196 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
3128, 29, 30divnegd 11931 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) = (-𝑁 / (2↑𝑚)))
3224, 27, 313brtr3d 5126 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚)))
33 1zzd 12524 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
3415, 33zsubcld 12603 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ)
3534zred 12598 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℝ)
365renegcld 11565 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℝ)
379nnrpd 12953 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℝ+)
3835, 36, 37ltmuldivd 13002 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚))))
3932, 38mpbird 257 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁)
409nnzd 12516 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
4134, 40zmulcld 12604 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ)
424znegcld 12600 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℤ)
43 zltlem1 12546 . . . . . . . . . . . . 13 ((((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ ∧ -𝑁 ∈ ℤ) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4441, 42, 43syl2anc 584 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4539, 44mpbid 232 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1))
4636, 21resubcld 11566 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) ∈ ℝ)
4735, 46, 37lemuldivd 13004 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1) ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚))))
4845, 47mpbid 232 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)))
49 flle 13721 . . . . . . . . . . . . . . . . 17 ((𝑁 / (2↑𝑚)) ∈ ℝ → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5010, 49syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5120, 10lenegd 11717 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)) ↔ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))))
5250, 51mpbid 232 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5331, 52eqbrtrrd 5119 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5420renegcld 11565 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
5536, 54, 37ledivmuld 13008 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))) ↔ -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5653, 55mpbid 232 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
5740, 15zmulcld 12604 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ)
58 zlem1lt 12545 . . . . . . . . . . . . . 14 ((-𝑁 ∈ ℤ ∧ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5942, 57, 58syl2anc 584 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6056, 59mpbid 232 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
6146, 54, 37ltdivmuld 13006 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6260, 61mpbird 257 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))))
6325negcld 11480 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
6463, 26npcand 11497 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1) = -(⌊‘(𝑁 / (2↑𝑚))))
6562, 64breqtrrd 5123 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))
6646, 9nndivred 12200 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ)
67 flbi 13738 . . . . . . . . . . 11 ((((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ ∧ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6866, 34, 67syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6948, 65, 68mpbir2and 713 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
7069breq2d 5107 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
7117, 70bitr4d 282 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
721, 14, 713bitrd 305 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7372notbid 318 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7473pm5.32da 579 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
75 znegcl 12528 . . . . . 6 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
76 1zzd 12524 . . . . . 6 (𝑁 ∈ ℤ → 1 ∈ ℤ)
7775, 76zsubcld 12603 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
7877biantrurd 532 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
7974, 78bitrd 279 . . 3 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
80 eldif 3915 . . 3 (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)))
81 bitsval 16353 . . . 4 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
82 3anass 1094 . . . 4 (((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8381, 82bitri 275 . . 3 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8479, 80, 833bitr4g 314 . 2 (𝑁 ∈ ℤ → (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ 𝑚 ∈ (bits‘(-𝑁 − 1))))
8584eqrdv 2727 1 (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3902   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  cfl 13712  cexp 13986  cdvds 16181  bitscbits 16348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-seq 13927  df-exp 13987  df-dvds 16182  df-bits 16351
This theorem is referenced by:  m1bits  16369  bitsf1  16375
  Copyright terms: Public domain W3C validator