MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsval2 Structured version   Visualization version   GIF version

Theorem bitsval2 15757
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsval2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))

Proof of Theorem bitsval2
StepHypRef Expression
1 bitsval 15756 . . 3 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
2 df-3an 1085 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))) ↔ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
31, 2bitri 277 . 2 (𝑀 ∈ (bits‘𝑁) ↔ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
43baib 538 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wcel 2114   class class class wbr 5052  cfv 6341  (class class class)co 7142   / cdiv 11283  2c2 11679  0cn0 11884  cz 11968  cfl 13150  cexp 13419  cdvds 15592  bitscbits 15751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-1cn 10581  ax-addcl 10583
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7145  df-om 7567  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-nn 11625  df-n0 11885  df-bits 15754
This theorem is referenced by:  bits0  15760  bitsp1  15763  bitsfzolem  15766  bitsfzo  15767  bitsmod  15768  bitscmp  15770  bitsinv1lem  15773  bitsshft  15807  bits0ALTV  43929  dig2bits  44759
  Copyright terms: Public domain W3C validator