MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsval2 Structured version   Visualization version   GIF version

Theorem bitsval2 16348
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsval2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))

Proof of Theorem bitsval2
StepHypRef Expression
1 bitsval 16347 . . 3 (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
2 df-3an 1089 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))) ↔ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
31, 2bitri 274 . 2 (𝑀 ∈ (bits‘𝑁) ↔ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
43baib 536 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087  wcel 2106   class class class wbr 5141  cfv 6532  (class class class)co 7393   / cdiv 11853  2c2 12249  0cn0 12454  cz 12540  cfl 13737  cexp 14009  cdvds 16179  bitscbits 16342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-1cn 11150  ax-addcl 11152
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-nn 12195  df-n0 12455  df-bits 16345
This theorem is referenced by:  bits0  16351  bitsp1  16354  bitsfzolem  16357  bitsfzo  16358  bitsmod  16359  bitscmp  16361  bitsinv1lem  16364  bitsshft  16398  bits0ALTV  46119  dig2bits  46948
  Copyright terms: Public domain W3C validator