Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-lineqi Structured version   Visualization version   GIF version

Theorem bj-lineqi 35636
Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-lineqi.a (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
bj-lineqi.b (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
bj-lineqi.x (๐œ‘ โ†’ ๐‘‹ โˆˆ โ„‚)
bj-lineqi.y (๐œ‘ โ†’ ๐‘Œ โˆˆ โ„‚)
bj-lineqi.n0 (๐œ‘ โ†’ ๐ด โ‰  0)
bj-lineqi.1 (๐œ‘ โ†’ ((๐ด ยท ๐‘‹) + ๐ต) = ๐‘Œ)
Assertion
Ref Expression
bj-lineqi (๐œ‘ โ†’ ๐‘‹ = ((๐‘Œ โˆ’ ๐ต) / ๐ด))

Proof of Theorem bj-lineqi
StepHypRef Expression
1 bj-lineqi.1 . 2 (๐œ‘ โ†’ ((๐ด ยท ๐‘‹) + ๐ต) = ๐‘Œ)
2 bj-lineqi.a . . 3 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
3 bj-lineqi.b . . 3 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
4 bj-lineqi.x . . 3 (๐œ‘ โ†’ ๐‘‹ โˆˆ โ„‚)
5 bj-lineqi.y . . 3 (๐œ‘ โ†’ ๐‘Œ โˆˆ โ„‚)
6 bj-lineqi.n0 . . 3 (๐œ‘ โ†’ ๐ด โ‰  0)
72, 3, 4, 5, 6lineq 11914 . 2 (๐œ‘ โ†’ (((๐ด ยท ๐‘‹) + ๐ต) = ๐‘Œ โ†” ๐‘‹ = ((๐‘Œ โˆ’ ๐ต) / ๐ด)))
81, 7mpbid 231 1 (๐œ‘ โ†’ ๐‘‹ = ((๐‘Œ โˆ’ ๐ต) / ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2940  (class class class)co 7338  โ„‚cc 10971  0cc0 10973   + caddc 10976   ยท cmul 10978   โˆ’ cmin 11307   / cdiv 11734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-po 5533  df-so 5534  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-div 11735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator