Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem Structured version   Visualization version   GIF version

Theorem bj-bary1lem 35481
Description: Lemma for bj-bary1 35483: expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
Assertion
Ref Expression
bj-bary1lem (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))

Proof of Theorem bj-bary1lem
StepHypRef Expression
1 bj-bary1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
2 bj-bary1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 10995 . . . . . . . . 9 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
4 bj-bary1.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
54, 2mulcld 10995 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
63, 5subcld 11332 . . . . . . . 8 (𝜑 → ((𝐵 · 𝐴) − (𝑋 · 𝐴)) ∈ ℂ)
74, 1mulcld 10995 . . . . . . . 8 (𝜑 → (𝑋 · 𝐵) ∈ ℂ)
82, 1mulcld 10995 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
96, 7, 8addsub12d 11355 . . . . . . 7 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))))
103, 5, 8sub32d 11364 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)))
111, 2bj-subcom 35479 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐴) − (𝐴 · 𝐵)) = 0)
1211oveq1d 7290 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)) = (0 − (𝑋 · 𝐴)))
1310, 12eqtrd 2778 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (0 − (𝑋 · 𝐴)))
1413oveq2d 7291 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
159, 14eqtrd 2778 . . . . . 6 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
16 0cnd 10968 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
177, 16, 5addsubassd 11352 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
187addid1d 11175 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + 0) = (𝑋 · 𝐵))
1918oveq1d 7290 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2015, 17, 193eqtr2d 2784 . . . . 5 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
211, 4, 2subdird 11432 . . . . . 6 (𝜑 → ((𝐵𝑋) · 𝐴) = ((𝐵 · 𝐴) − (𝑋 · 𝐴)))
224, 2, 1subdird 11432 . . . . . 6 (𝜑 → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2321, 22oveq12d 7293 . . . . 5 (𝜑 → (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) = (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))))
244, 1, 2subdid 11431 . . . . 5 (𝜑 → (𝑋 · (𝐵𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2520, 23, 243eqtr4rd 2789 . . . 4 (𝜑 → (𝑋 · (𝐵𝐴)) = (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)))
2625oveq1d 7290 . . 3 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)))
271, 4subcld 11332 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℂ)
2827, 2mulcld 10995 . . . 4 (𝜑 → ((𝐵𝑋) · 𝐴) ∈ ℂ)
294, 2subcld 11332 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
3029, 1mulcld 10995 . . . 4 (𝜑 → ((𝑋𝐴) · 𝐵) ∈ ℂ)
311, 2subcld 11332 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
32 bj-bary1.neq . . . . . 6 (𝜑𝐴𝐵)
3332necomd 2999 . . . . 5 (𝜑𝐵𝐴)
341, 2, 33subne0d 11341 . . . 4 (𝜑 → (𝐵𝐴) ≠ 0)
3528, 30, 31, 34divdird 11789 . . 3 (𝜑 → ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
3626, 35eqtrd 2778 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
374, 31, 34divcan4d 11757 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = 𝑋)
3827, 2, 31, 34div23d 11788 . . 3 (𝜑 → (((𝐵𝑋) · 𝐴) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
3929, 1, 31, 34div23d 11788 . . 3 (𝜑 → (((𝑋𝐴) · 𝐵) / (𝐵𝐴)) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
4038, 39oveq12d 7293 . 2 (𝜑 → ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
4136, 37, 403eqtr3d 2786 1 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633
This theorem is referenced by:  bj-bary1  35483
  Copyright terms: Public domain W3C validator