Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem Structured version   Visualization version   GIF version

Theorem bj-bary1lem 37270
Description: Lemma for bj-bary1 37272: expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
Assertion
Ref Expression
bj-bary1lem (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))

Proof of Theorem bj-bary1lem
StepHypRef Expression
1 bj-bary1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
2 bj-bary1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 11263 . . . . . . . . 9 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
4 bj-bary1.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
54, 2mulcld 11263 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
63, 5subcld 11602 . . . . . . . 8 (𝜑 → ((𝐵 · 𝐴) − (𝑋 · 𝐴)) ∈ ℂ)
74, 1mulcld 11263 . . . . . . . 8 (𝜑 → (𝑋 · 𝐵) ∈ ℂ)
82, 1mulcld 11263 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
96, 7, 8addsub12d 11625 . . . . . . 7 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))))
103, 5, 8sub32d 11634 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)))
111, 2bj-subcom 37268 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐴) − (𝐴 · 𝐵)) = 0)
1211oveq1d 7428 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)) = (0 − (𝑋 · 𝐴)))
1310, 12eqtrd 2769 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (0 − (𝑋 · 𝐴)))
1413oveq2d 7429 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
159, 14eqtrd 2769 . . . . . 6 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
16 0cnd 11236 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
177, 16, 5addsubassd 11622 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
187addridd 11443 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + 0) = (𝑋 · 𝐵))
1918oveq1d 7428 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2015, 17, 193eqtr2d 2775 . . . . 5 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
211, 4, 2subdird 11702 . . . . . 6 (𝜑 → ((𝐵𝑋) · 𝐴) = ((𝐵 · 𝐴) − (𝑋 · 𝐴)))
224, 2, 1subdird 11702 . . . . . 6 (𝜑 → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2321, 22oveq12d 7431 . . . . 5 (𝜑 → (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) = (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))))
244, 1, 2subdid 11701 . . . . 5 (𝜑 → (𝑋 · (𝐵𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2520, 23, 243eqtr4rd 2780 . . . 4 (𝜑 → (𝑋 · (𝐵𝐴)) = (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)))
2625oveq1d 7428 . . 3 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)))
271, 4subcld 11602 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℂ)
2827, 2mulcld 11263 . . . 4 (𝜑 → ((𝐵𝑋) · 𝐴) ∈ ℂ)
294, 2subcld 11602 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
3029, 1mulcld 11263 . . . 4 (𝜑 → ((𝑋𝐴) · 𝐵) ∈ ℂ)
311, 2subcld 11602 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
32 bj-bary1.neq . . . . . 6 (𝜑𝐴𝐵)
3332necomd 2986 . . . . 5 (𝜑𝐵𝐴)
341, 2, 33subne0d 11611 . . . 4 (𝜑 → (𝐵𝐴) ≠ 0)
3528, 30, 31, 34divdird 12063 . . 3 (𝜑 → ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
3626, 35eqtrd 2769 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
374, 31, 34divcan4d 12031 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = 𝑋)
3827, 2, 31, 34div23d 12062 . . 3 (𝜑 → (((𝐵𝑋) · 𝐴) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
3929, 1, 31, 34div23d 12062 . . 3 (𝜑 → (((𝑋𝐴) · 𝐵) / (𝐵𝐴)) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
4038, 39oveq12d 7431 . 2 (𝜑 → ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
4136, 37, 403eqtr3d 2777 1 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2931  (class class class)co 7413  cc 11135  0cc0 11137   + caddc 11140   · cmul 11142  cmin 11474   / cdiv 11902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903
This theorem is referenced by:  bj-bary1  37272
  Copyright terms: Public domain W3C validator