Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem Structured version   Visualization version   GIF version

Theorem bj-bary1lem 37304
Description: Lemma for bj-bary1 37306: expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
Assertion
Ref Expression
bj-bary1lem (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))

Proof of Theorem bj-bary1lem
StepHypRef Expression
1 bj-bary1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
2 bj-bary1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 11135 . . . . . . . . 9 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
4 bj-bary1.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
54, 2mulcld 11135 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
63, 5subcld 11475 . . . . . . . 8 (𝜑 → ((𝐵 · 𝐴) − (𝑋 · 𝐴)) ∈ ℂ)
74, 1mulcld 11135 . . . . . . . 8 (𝜑 → (𝑋 · 𝐵) ∈ ℂ)
82, 1mulcld 11135 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
96, 7, 8addsub12d 11498 . . . . . . 7 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))))
103, 5, 8sub32d 11507 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)))
111, 2bj-subcom 37302 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐴) − (𝐴 · 𝐵)) = 0)
1211oveq1d 7364 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)) = (0 − (𝑋 · 𝐴)))
1310, 12eqtrd 2764 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (0 − (𝑋 · 𝐴)))
1413oveq2d 7365 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
159, 14eqtrd 2764 . . . . . 6 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
16 0cnd 11108 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
177, 16, 5addsubassd 11495 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
187addridd 11316 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + 0) = (𝑋 · 𝐵))
1918oveq1d 7364 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2015, 17, 193eqtr2d 2770 . . . . 5 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
211, 4, 2subdird 11577 . . . . . 6 (𝜑 → ((𝐵𝑋) · 𝐴) = ((𝐵 · 𝐴) − (𝑋 · 𝐴)))
224, 2, 1subdird 11577 . . . . . 6 (𝜑 → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2321, 22oveq12d 7367 . . . . 5 (𝜑 → (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) = (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))))
244, 1, 2subdid 11576 . . . . 5 (𝜑 → (𝑋 · (𝐵𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2520, 23, 243eqtr4rd 2775 . . . 4 (𝜑 → (𝑋 · (𝐵𝐴)) = (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)))
2625oveq1d 7364 . . 3 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)))
271, 4subcld 11475 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℂ)
2827, 2mulcld 11135 . . . 4 (𝜑 → ((𝐵𝑋) · 𝐴) ∈ ℂ)
294, 2subcld 11475 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
3029, 1mulcld 11135 . . . 4 (𝜑 → ((𝑋𝐴) · 𝐵) ∈ ℂ)
311, 2subcld 11475 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
32 bj-bary1.neq . . . . . 6 (𝜑𝐴𝐵)
3332necomd 2980 . . . . 5 (𝜑𝐵𝐴)
341, 2, 33subne0d 11484 . . . 4 (𝜑 → (𝐵𝐴) ≠ 0)
3528, 30, 31, 34divdird 11938 . . 3 (𝜑 → ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
3626, 35eqtrd 2764 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
374, 31, 34divcan4d 11906 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = 𝑋)
3827, 2, 31, 34div23d 11937 . . 3 (𝜑 → (((𝐵𝑋) · 𝐴) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
3929, 1, 31, 34div23d 11937 . . 3 (𝜑 → (((𝑋𝐴) · 𝐵) / (𝐵𝐴)) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
4038, 39oveq12d 7367 . 2 (𝜑 → ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
4136, 37, 403eqtr3d 2772 1 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012   · cmul 11014  cmin 11347   / cdiv 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778
This theorem is referenced by:  bj-bary1  37306
  Copyright terms: Public domain W3C validator