![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lineq | Structured version Visualization version GIF version |
Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019.) |
Ref | Expression |
---|---|
lineq.a | โข (๐ โ ๐ด โ โ) |
lineq.b | โข (๐ โ ๐ต โ โ) |
lineq.x | โข (๐ โ ๐ โ โ) |
lineq.y | โข (๐ โ ๐ โ โ) |
lineq.n0 | โข (๐ โ ๐ด โ 0) |
Ref | Expression |
---|---|
lineq | โข (๐ โ (((๐ด ยท ๐) + ๐ต) = ๐ โ ๐ = ((๐ โ ๐ต) / ๐ด))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lineq.a | . . . 4 โข (๐ โ ๐ด โ โ) | |
2 | lineq.x | . . . 4 โข (๐ โ ๐ โ โ) | |
3 | 1, 2 | mulcld 11240 | . . 3 โข (๐ โ (๐ด ยท ๐) โ โ) |
4 | lineq.b | . . 3 โข (๐ โ ๐ต โ โ) | |
5 | lineq.y | . . 3 โข (๐ โ ๐ โ โ) | |
6 | 3, 4, 5 | addlsub 11636 | . 2 โข (๐ โ (((๐ด ยท ๐) + ๐ต) = ๐ โ (๐ด ยท ๐) = (๐ โ ๐ต))) |
7 | 5, 4 | subcld 11577 | . . 3 โข (๐ โ (๐ โ ๐ต) โ โ) |
8 | lineq.n0 | . . 3 โข (๐ โ ๐ด โ 0) | |
9 | 1, 2, 7, 8 | rdiv 12055 | . 2 โข (๐ โ ((๐ด ยท ๐) = (๐ โ ๐ต) โ ๐ = ((๐ โ ๐ต) / ๐ด))) |
10 | 6, 9 | bitrd 278 | 1 โข (๐ โ (((๐ด ยท ๐) + ๐ต) = ๐ โ ๐ = ((๐ โ ๐ต) / ๐ด))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1539 โ wcel 2104 โ wne 2938 (class class class)co 7413 โcc 11112 0cc0 11114 + caddc 11117 ยท cmul 11119 โ cmin 11450 / cdiv 11877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 |
This theorem is referenced by: bj-lineqi 36495 itscnhlc0yqe 47534 |
Copyright terms: Public domain | W3C validator |