Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21g Structured version   Visualization version   GIF version

Theorem cdleme21g 39199
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l ≀ = (leβ€˜πΎ)
cdleme21.j ∨ = (joinβ€˜πΎ)
cdleme21.m ∧ = (meetβ€˜πΎ)
cdleme21.a 𝐴 = (Atomsβ€˜πΎ)
cdleme21.h 𝐻 = (LHypβ€˜πΎ)
cdleme21.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme21.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme21g.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
cdleme21g.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
cdleme21g.y π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)
cdleme21g.n 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))
cdleme21g.o 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))
Assertion
Ref Expression
cdleme21g ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑁 = 𝑂)

Proof of Theorem cdleme21g
StepHypRef Expression
1 cdleme21.l . 2 ≀ = (leβ€˜πΎ)
2 cdleme21.j . 2 ∨ = (joinβ€˜πΎ)
3 cdleme21.m . 2 ∧ = (meetβ€˜πΎ)
4 cdleme21.a . 2 𝐴 = (Atomsβ€˜πΎ)
5 cdleme21.h . 2 𝐻 = (LHypβ€˜πΎ)
6 cdleme21.u . 2 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
7 cdleme21.f . 2 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
8 eqid 2732 . 2 ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š))) = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
9 cdleme21g.d . 2 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
10 eqid 2732 . 2 ((𝑅 ∨ 𝑧) ∧ π‘Š) = ((𝑅 ∨ 𝑧) ∧ π‘Š)
11 cdleme21g.n . 2 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷))
12 eqid 2732 . 2 ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑧) ∧ π‘Š))) = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑧) ∧ π‘Š)))
13 cdleme21g.g . 2 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
14 cdleme21g.y . 2 π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)
15 cdleme21g.o . 2 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ π‘Œ))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15cdleme21f 39198 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) β†’ 𝑁 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  meetcmee 18264  Atomscatm 38128  HLchlt 38215  LHypclh 38850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854
This theorem is referenced by:  cdleme21h  39200
  Copyright terms: Public domain W3C validator