| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme21g | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.) |
| Ref | Expression |
|---|---|
| cdleme21.l | ⊢ ≤ = (le‘𝐾) |
| cdleme21.j | ⊢ ∨ = (join‘𝐾) |
| cdleme21.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme21.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme21.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme21.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme21.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
| cdleme21g.g | ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
| cdleme21g.d | ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
| cdleme21g.y | ⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) |
| cdleme21g.n | ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷)) |
| cdleme21g.o | ⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ 𝑌)) |
| Ref | Expression |
|---|---|
| cdleme21g | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) → 𝑁 = 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme21.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdleme21.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleme21.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleme21.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdleme21.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdleme21.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 7 | cdleme21.f | . 2 ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | |
| 8 | eqid 2729 | . 2 ⊢ ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) | |
| 9 | cdleme21g.d | . 2 ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
| 10 | eqid 2729 | . 2 ⊢ ((𝑅 ∨ 𝑧) ∧ 𝑊) = ((𝑅 ∨ 𝑧) ∧ 𝑊) | |
| 11 | cdleme21g.n | . 2 ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷)) | |
| 12 | eqid 2729 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) | |
| 13 | cdleme21g.g | . 2 ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) | |
| 14 | cdleme21g.y | . 2 ⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) | |
| 15 | cdleme21g.o | . 2 ⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ 𝑌)) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | cdleme21f 40331 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) → 𝑁 = 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 lecple 17187 joincjn 18236 meetcmee 18237 Atomscatm 39261 HLchlt 39348 LHypclh 39983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-join 18271 df-meet 18272 df-p0 18348 df-p1 18349 df-lat 18357 df-clat 18424 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 df-llines 39497 df-lplanes 39498 df-lvols 39499 df-lines 39500 df-psubsp 39502 df-pmap 39503 df-padd 39795 df-lhyp 39987 |
| This theorem is referenced by: cdleme21h 40333 |
| Copyright terms: Public domain | W3C validator |