![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme21g | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.) |
Ref | Expression |
---|---|
cdleme21.l | ⊢ ≤ = (le‘𝐾) |
cdleme21.j | ⊢ ∨ = (join‘𝐾) |
cdleme21.m | ⊢ ∧ = (meet‘𝐾) |
cdleme21.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme21.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme21.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme21.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme21g.g | ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
cdleme21g.d | ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
cdleme21g.y | ⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) |
cdleme21g.n | ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷)) |
cdleme21g.o | ⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ 𝑌)) |
Ref | Expression |
---|---|
cdleme21g | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) → 𝑁 = 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme21.l | . 2 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme21.j | . 2 ⊢ ∨ = (join‘𝐾) | |
3 | cdleme21.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | cdleme21.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdleme21.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdleme21.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | cdleme21.f | . 2 ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | |
8 | eqid 2740 | . 2 ⊢ ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) | |
9 | cdleme21g.d | . 2 ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
10 | eqid 2740 | . 2 ⊢ ((𝑅 ∨ 𝑧) ∧ 𝑊) = ((𝑅 ∨ 𝑧) ∧ 𝑊) | |
11 | cdleme21g.n | . 2 ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷)) | |
12 | eqid 2740 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) | |
13 | cdleme21g.g | . 2 ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) | |
14 | cdleme21g.y | . 2 ⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) | |
15 | cdleme21g.o | . 2 ⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ 𝑌)) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | cdleme21f 40289 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) → 𝑁 = 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 meetcmee 18382 Atomscatm 39219 HLchlt 39306 LHypclh 39941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 |
This theorem is referenced by: cdleme21h 40291 |
Copyright terms: Public domain | W3C validator |