Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme21g | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.) |
Ref | Expression |
---|---|
cdleme21.l | ⊢ ≤ = (le‘𝐾) |
cdleme21.j | ⊢ ∨ = (join‘𝐾) |
cdleme21.m | ⊢ ∧ = (meet‘𝐾) |
cdleme21.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme21.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme21.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme21.f | ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme21g.g | ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
cdleme21g.d | ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
cdleme21g.y | ⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) |
cdleme21g.n | ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷)) |
cdleme21g.o | ⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ 𝑌)) |
Ref | Expression |
---|---|
cdleme21g | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) → 𝑁 = 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme21.l | . 2 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme21.j | . 2 ⊢ ∨ = (join‘𝐾) | |
3 | cdleme21.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | cdleme21.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdleme21.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdleme21.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | cdleme21.f | . 2 ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | |
8 | eqid 2738 | . 2 ⊢ ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) | |
9 | cdleme21g.d | . 2 ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | |
10 | eqid 2738 | . 2 ⊢ ((𝑅 ∨ 𝑧) ∧ 𝑊) = ((𝑅 ∨ 𝑧) ∧ 𝑊) | |
11 | cdleme21g.n | . 2 ⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝐷)) | |
12 | eqid 2738 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑧) ∧ 𝑊))) | |
13 | cdleme21g.g | . 2 ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) | |
14 | cdleme21g.y | . 2 ⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) | |
15 | cdleme21g.o | . 2 ⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ 𝑌)) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | cdleme21f 38273 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇)) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧)))) → 𝑁 = 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 meetcmee 17945 Atomscatm 37204 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 |
This theorem is referenced by: cdleme21h 38275 |
Copyright terms: Public domain | W3C validator |