![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme43cN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 last line: r v g(s) = r v v2. (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleme43.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleme43.l | ⊢ ≤ = (le‘𝐾) |
cdleme43.j | ⊢ ∨ = (join‘𝐾) |
cdleme43.m | ⊢ ∧ = (meet‘𝐾) |
cdleme43.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme43.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme43.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme43.x | ⊢ 𝑋 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
cdleme43.c | ⊢ 𝐶 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.f | ⊢ 𝑍 = ((𝑃 ∨ 𝑄) ∧ (𝐶 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.d | ⊢ 𝐷 = ((𝑆 ∨ 𝑋) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.g | ⊢ 𝐺 = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) |
cdleme43.e | ⊢ 𝐸 = ((𝐷 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝐷) ∧ 𝑊))) |
cdleme43.v | ⊢ 𝑉 = ((𝑍 ∨ 𝑆) ∧ 𝑊) |
cdleme43.y | ⊢ 𝑌 = ((𝑅 ∨ 𝐷) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme43cN | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑅 ∨ 𝐷) = (𝑅 ∨ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1203 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp22 1207 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | |
3 | simp1 1136 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | |
4 | simp21 1206 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) | |
5 | simp23 1208 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) | |
6 | simp3 1138 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) | |
7 | cdleme43.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | cdleme43.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | cdleme43.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
10 | cdleme43.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
11 | cdleme43.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
12 | cdleme43.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
13 | cdleme43.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
14 | cdleme43.x | . . . 4 ⊢ 𝑋 = ((𝑄 ∨ 𝑃) ∧ 𝑊) | |
15 | cdleme43.c | . . . 4 ⊢ 𝐶 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | |
16 | cdleme43.f | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ 𝑄) ∧ (𝐶 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
17 | cdleme43.d | . . . 4 ⊢ 𝐷 = ((𝑆 ∨ 𝑋) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) | |
18 | cdleme43.g | . . . 4 ⊢ 𝐺 = ((𝑄 ∨ 𝑃) ∧ (𝐷 ∨ ((𝑍 ∨ 𝑆) ∧ 𝑊))) | |
19 | cdleme43.e | . . . 4 ⊢ 𝐸 = ((𝐷 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝐷) ∧ 𝑊))) | |
20 | cdleme43.v | . . . 4 ⊢ 𝑉 = ((𝑍 ∨ 𝑆) ∧ 𝑊) | |
21 | cdleme43.y | . . . 4 ⊢ 𝑌 = ((𝑅 ∨ 𝐷) ∧ 𝑊) | |
22 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | cdleme43bN 39230 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐷 ∈ 𝐴 ∧ ¬ 𝐷 ≤ 𝑊)) |
23 | 3, 4, 5, 6, 22 | syl121anc 1375 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐷 ∈ 𝐴 ∧ ¬ 𝐷 ≤ 𝑊)) |
24 | 7, 8, 9, 10, 11, 12, 21 | cdleme42a 39211 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝐷 ∈ 𝐴 ∧ ¬ 𝐷 ≤ 𝑊)) → (𝑅 ∨ 𝐷) = (𝑅 ∨ 𝑌)) |
25 | 1, 2, 23, 24 | syl3anc 1371 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑅 ∨ 𝐷) = (𝑅 ∨ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5142 ‘cfv 6533 (class class class)co 7394 Basecbs 17128 lecple 17188 joincjn 18248 meetcmee 18249 Atomscatm 38002 HLchlt 38089 LHypclh 38724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7959 df-2nd 7960 df-proset 18232 df-poset 18250 df-plt 18267 df-lub 18283 df-glb 18284 df-join 18285 df-meet 18286 df-p0 18362 df-p1 18363 df-lat 18369 df-clat 18436 df-oposet 37915 df-ol 37917 df-oml 37918 df-covers 38005 df-ats 38006 df-atl 38037 df-cvlat 38061 df-hlat 38090 df-lines 38241 df-psubsp 38243 df-pmap 38244 df-padd 38536 df-lhyp 38728 |
This theorem is referenced by: cdlemeg46rjgN 39262 |
Copyright terms: Public domain | W3C validator |