Proof of Theorem cdleme42a
| Step | Hyp | Ref
| Expression |
| 1 | | cdleme42.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 2 | | cdleme42.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(1.‘𝐾) =
(1.‘𝐾) |
| 4 | | cdleme42.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | | cdleme42.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 6 | 1, 2, 3, 4, 5 | lhpjat2 40045 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
| 7 | 6 | 3adant3 1132 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
| 8 | 7 | oveq2d 7426 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊)) = ((𝑅 ∨ 𝑆) ∧ (1.‘𝐾))) |
| 9 | | cdleme42.v |
. . . 4
⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
| 10 | 9 | oveq2i 7421 |
. . 3
⊢ (𝑅 ∨ 𝑉) = (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
| 11 | | simp1l 1198 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 12 | | simp2l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝑅 ∈ 𝐴) |
| 13 | | simp3l 1202 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝑆 ∈ 𝐴) |
| 14 | | cdleme42.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
| 15 | 14, 2, 4 | hlatjcl 39390 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ 𝐵) |
| 16 | 11, 12, 13, 15 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝑅 ∨ 𝑆) ∈ 𝐵) |
| 17 | | simp1r 1199 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
| 18 | 14, 5 | lhpbase 40022 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 19 | 17, 18 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
| 20 | 1, 2, 4 | hlatlej1 39398 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑅 ≤ (𝑅 ∨ 𝑆)) |
| 21 | 11, 12, 13, 20 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝑅 ≤ (𝑅 ∨ 𝑆)) |
| 22 | | cdleme42.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 23 | 14, 1, 2, 22, 4 | atmod3i1 39888 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑆) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ 𝑅 ≤ (𝑅 ∨ 𝑆)) → (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊))) |
| 24 | 11, 12, 16, 19, 21, 23 | syl131anc 1385 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊))) |
| 25 | 10, 24 | eqtr2id 2784 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊)) = (𝑅 ∨ 𝑉)) |
| 26 | | hlol 39384 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 27 | 11, 26 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝐾 ∈ OL) |
| 28 | 14, 22, 3 | olm11 39250 |
. . 3
⊢ ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ 𝐵) → ((𝑅 ∨ 𝑆) ∧ (1.‘𝐾)) = (𝑅 ∨ 𝑆)) |
| 29 | 27, 16, 28 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → ((𝑅 ∨ 𝑆) ∧ (1.‘𝐾)) = (𝑅 ∨ 𝑆)) |
| 30 | 8, 25, 29 | 3eqtr3rd 2780 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝑅 ∨ 𝑆) = (𝑅 ∨ 𝑉)) |