Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42a Structured version   Visualization version   GIF version

Theorem cdleme42a 39645
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 3-Mar-2013.)
Hypotheses
Ref Expression
cdleme42.b 𝐡 = (Baseβ€˜πΎ)
cdleme42.l ≀ = (leβ€˜πΎ)
cdleme42.j ∨ = (joinβ€˜πΎ)
cdleme42.m ∧ = (meetβ€˜πΎ)
cdleme42.a 𝐴 = (Atomsβ€˜πΎ)
cdleme42.h 𝐻 = (LHypβ€˜πΎ)
cdleme42.v 𝑉 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
cdleme42a (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑅 ∨ 𝑆) = (𝑅 ∨ 𝑉))

Proof of Theorem cdleme42a
StepHypRef Expression
1 cdleme42.l . . . . 5 ≀ = (leβ€˜πΎ)
2 cdleme42.j . . . . 5 ∨ = (joinβ€˜πΎ)
3 eqid 2730 . . . . 5 (1.β€˜πΎ) = (1.β€˜πΎ)
4 cdleme42.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
5 cdleme42.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
61, 2, 3, 4, 5lhpjat2 39195 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
763adant3 1130 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
87oveq2d 7427 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)))
9 cdleme42.v . . . 4 𝑉 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
109oveq2i 7422 . . 3 (𝑅 ∨ 𝑉) = (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))
11 simp1l 1195 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
12 simp2l 1197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑅 ∈ 𝐴)
13 simp3l 1199 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑆 ∈ 𝐴)
14 cdleme42.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
1514, 2, 4hlatjcl 38540 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ 𝐡)
1611, 12, 13, 15syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑅 ∨ 𝑆) ∈ 𝐡)
17 simp1r 1196 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
1814, 5lhpbase 39172 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
1917, 18syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ π‘Š ∈ 𝐡)
201, 2, 4hlatlej1 38548 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
2111, 12, 13, 20syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
22 cdleme42.m . . . . 5 ∧ = (meetβ€˜πΎ)
2314, 1, 2, 22, 4atmod3i1 39038 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑆) ∈ 𝐡 ∧ π‘Š ∈ 𝐡) ∧ 𝑅 ≀ (𝑅 ∨ 𝑆)) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)))
2411, 12, 16, 19, 21, 23syl131anc 1381 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)))
2510, 24eqtr2id 2783 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)) = (𝑅 ∨ 𝑉))
26 hlol 38534 . . . 4 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
2711, 26syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ 𝐾 ∈ OL)
2814, 22, 3olm11 38400 . . 3 ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ 𝐡) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
2927, 16, 28syl2anc 582 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
308, 25, 293eqtr3rd 2779 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑅 ∨ 𝑆) = (𝑅 ∨ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  1.cp1 18381  OLcol 38347  Atomscatm 38436  HLchlt 38523  LHypclh 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162
This theorem is referenced by:  cdleme42d  39647  cdleme42f  39654  cdleme42g  39655  cdleme42keg  39660  cdleme43cN  39665
  Copyright terms: Public domain W3C validator