Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > spancl | Structured version Visualization version GIF version |
Description: The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spancl | ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spanval 29692 | . 2 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) | |
2 | ssrab2 4014 | . . 3 ⊢ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ Sℋ | |
3 | helsh 29604 | . . . . 5 ⊢ ℋ ∈ Sℋ | |
4 | sseq2 3948 | . . . . . 6 ⊢ (𝑥 = ℋ → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ)) | |
5 | 4 | rspcev 3561 | . . . . 5 ⊢ (( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ) → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
6 | 3, 5 | mpan 687 | . . . 4 ⊢ (𝐴 ⊆ ℋ → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
7 | rabn0 4321 | . . . 4 ⊢ ({𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝐴 ⊆ ℋ → {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ≠ ∅) |
9 | shintcl 29689 | . . 3 ⊢ (({𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ⊆ Sℋ ∧ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ Sℋ ) | |
10 | 2, 8, 9 | sylancr 587 | . 2 ⊢ (𝐴 ⊆ ℋ → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ Sℋ ) |
11 | 1, 10 | eqeltrd 2839 | 1 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 ⊆ wss 3888 ∅c0 4258 ∩ cint 4881 ‘cfv 6435 ℋchba 29278 Sℋ csh 29287 spancspn 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-pre-sup 10947 ax-addf 10948 ax-mulf 10949 ax-hilex 29358 ax-hfvadd 29359 ax-hvcom 29360 ax-hvass 29361 ax-hv0cl 29362 ax-hvaddid 29363 ax-hfvmul 29364 ax-hvmulid 29365 ax-hvmulass 29366 ax-hvdistr1 29367 ax-hvdistr2 29368 ax-hvmul0 29369 ax-hfi 29438 ax-his1 29441 ax-his2 29442 ax-his3 29443 ax-his4 29444 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-er 8496 df-map 8615 df-pm 8616 df-en 8732 df-dom 8733 df-sdom 8734 df-sup 9199 df-inf 9200 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-n0 12232 df-z 12318 df-uz 12581 df-q 12687 df-rp 12729 df-xneg 12846 df-xadd 12847 df-xmul 12848 df-icc 13084 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-top 22041 df-topon 22058 df-bases 22094 df-lm 22378 df-haus 22464 df-grpo 28852 df-gid 28853 df-ginv 28854 df-gdiv 28855 df-ablo 28904 df-vc 28918 df-nv 28951 df-va 28954 df-ba 28955 df-sm 28956 df-0v 28957 df-vs 28958 df-nmcv 28959 df-ims 28960 df-hnorm 29327 df-hvsub 29330 df-hlim 29331 df-sh 29566 df-ch 29580 df-ch0 29612 df-span 29668 |
This theorem is referenced by: elspancl 29696 shsupcl 29697 span0 29901 spanuni 29903 spanunsni 29938 shatomistici 30720 |
Copyright terms: Public domain | W3C validator |