MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem3 Structured version   Visualization version   GIF version

Theorem iscmet3lem3 25305
Description: Lemma for iscmet3 25308. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
iscmet3lem3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Distinct variable groups:   𝑗,𝑘,𝑅   𝑗,𝑍,𝑘   𝑗,𝑀,𝑘

Proof of Theorem iscmet3lem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iscmet3.1 . . 3 𝑍 = (ℤ𝑀)
2 simpl 481 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑀 ∈ ℤ)
3 simpr 483 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+)
4 eluzelz 12877 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
54, 1eleq2s 2844 . . . . 5 (𝑘𝑍𝑘 ∈ ℤ)
65adantl 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
7 oveq2 7423 . . . . 5 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
8 eqid 2726 . . . . 5 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))
9 ovex 7448 . . . . 5 ((1 / 2)↑𝑘) ∈ V
107, 8, 9fvmpt 7000 . . . 4 (𝑘 ∈ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
116, 10syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
12 nn0uz 12909 . . . . . . 7 0 = (ℤ‘0)
1312reseq2i 5978 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0))
14 nn0ssz 12626 . . . . . . 7 0 ⊆ ℤ
15 resmpt 6038 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
1614, 15ax-mp 5 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
1713, 16eqtr3i 2756 . . . . 5 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
18 halfcn 12472 . . . . . . 7 (1 / 2) ∈ ℂ
1918a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (1 / 2) ∈ ℂ)
20 halfre 12471 . . . . . . . . 9 (1 / 2) ∈ ℝ
21 halfge0 12474 . . . . . . . . 9 0 ≤ (1 / 2)
22 absid 15295 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2320, 21, 22mp2an 690 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
24 halflt1 12475 . . . . . . . 8 (1 / 2) < 1
2523, 24eqbrtri 5166 . . . . . . 7 (abs‘(1 / 2)) < 1
2625a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (abs‘(1 / 2)) < 1)
2719, 26expcnv 15862 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
2817, 27eqbrtrid 5180 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0)
29 0z 12614 . . . . 5 0 ∈ ℤ
30 zex 12612 . . . . . . 7 ℤ ∈ V
3130mptex 7231 . . . . . 6 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V
3231a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V)
33 climres 15571 . . . . 5 ((0 ∈ ℤ ∧ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3429, 32, 33sylancr 585 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3528, 34mpbid 231 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0)
361, 2, 3, 11, 35climi0 15508 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅)
371uztrn2 12886 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
38 1rp 13025 . . . . . . . . . 10 1 ∈ ℝ+
39 rphalfcl 13048 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
4038, 39ax-mp 5 . . . . . . . . 9 (1 / 2) ∈ ℝ+
41 rpexpcl 14093 . . . . . . . . 9 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
4240, 6, 41sylancr 585 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
43 rpre 13029 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → ((1 / 2)↑𝑘) ∈ ℝ)
44 rpge0 13034 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → 0 ≤ ((1 / 2)↑𝑘))
4543, 44absidd 15421 . . . . . . . 8 (((1 / 2)↑𝑘) ∈ ℝ+ → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4642, 45syl 17 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4746breq1d 5155 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4837, 47sylan2 591 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4948anassrs 466 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
5049ralbidva 3166 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∀𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5150rexbidva 3167 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5236, 51mpbid 231 1 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3464  wss 3948   class class class wbr 5145  cmpt 5228  cres 5676  cfv 6545  (class class class)co 7415  cc 11146  cr 11147  0cc0 11148  1c1 11149   < clt 11288  cle 11289   / cdiv 11911  2c2 12312  0cn0 12517  cz 12603  cuz 12867  +crp 13021  cexp 14074  abscabs 15233  cli 15480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-pm 8849  df-en 8966  df-dom 8967  df-sdom 8968  df-sup 9477  df-inf 9478  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12258  df-2 12320  df-3 12321  df-n0 12518  df-z 12604  df-uz 12868  df-rp 13022  df-fl 13805  df-seq 14015  df-exp 14075  df-cj 15098  df-re 15099  df-im 15100  df-sqrt 15234  df-abs 15235  df-clim 15484  df-rlim 15485
This theorem is referenced by:  iscmet3lem1  25306  iscmet3lem2  25307
  Copyright terms: Public domain W3C validator