MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem3 Structured version   Visualization version   GIF version

Theorem iscmet3lem3 24359
Description: Lemma for iscmet3 24362. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
iscmet3lem3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Distinct variable groups:   𝑗,𝑘,𝑅   𝑗,𝑍,𝑘   𝑗,𝑀,𝑘

Proof of Theorem iscmet3lem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iscmet3.1 . . 3 𝑍 = (ℤ𝑀)
2 simpl 482 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑀 ∈ ℤ)
3 simpr 484 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+)
4 eluzelz 12521 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
54, 1eleq2s 2857 . . . . 5 (𝑘𝑍𝑘 ∈ ℤ)
65adantl 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
7 oveq2 7263 . . . . 5 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
8 eqid 2738 . . . . 5 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))
9 ovex 7288 . . . . 5 ((1 / 2)↑𝑘) ∈ V
107, 8, 9fvmpt 6857 . . . 4 (𝑘 ∈ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
116, 10syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
12 nn0uz 12549 . . . . . . 7 0 = (ℤ‘0)
1312reseq2i 5877 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0))
14 nn0ssz 12271 . . . . . . 7 0 ⊆ ℤ
15 resmpt 5934 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
1614, 15ax-mp 5 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
1713, 16eqtr3i 2768 . . . . 5 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
18 halfcn 12118 . . . . . . 7 (1 / 2) ∈ ℂ
1918a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (1 / 2) ∈ ℂ)
20 halfre 12117 . . . . . . . . 9 (1 / 2) ∈ ℝ
21 halfge0 12120 . . . . . . . . 9 0 ≤ (1 / 2)
22 absid 14936 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2320, 21, 22mp2an 688 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
24 halflt1 12121 . . . . . . . 8 (1 / 2) < 1
2523, 24eqbrtri 5091 . . . . . . 7 (abs‘(1 / 2)) < 1
2625a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (abs‘(1 / 2)) < 1)
2719, 26expcnv 15504 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
2817, 27eqbrtrid 5105 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0)
29 0z 12260 . . . . 5 0 ∈ ℤ
30 zex 12258 . . . . . . 7 ℤ ∈ V
3130mptex 7081 . . . . . 6 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V
3231a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V)
33 climres 15212 . . . . 5 ((0 ∈ ℤ ∧ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3429, 32, 33sylancr 586 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3528, 34mpbid 231 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0)
361, 2, 3, 11, 35climi0 15149 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅)
371uztrn2 12530 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
38 1rp 12663 . . . . . . . . . 10 1 ∈ ℝ+
39 rphalfcl 12686 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
4038, 39ax-mp 5 . . . . . . . . 9 (1 / 2) ∈ ℝ+
41 rpexpcl 13729 . . . . . . . . 9 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
4240, 6, 41sylancr 586 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
43 rpre 12667 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → ((1 / 2)↑𝑘) ∈ ℝ)
44 rpge0 12672 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → 0 ≤ ((1 / 2)↑𝑘))
4543, 44absidd 15062 . . . . . . . 8 (((1 / 2)↑𝑘) ∈ ℝ+ → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4642, 45syl 17 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4746breq1d 5080 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4837, 47sylan2 592 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4948anassrs 467 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
5049ralbidva 3119 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∀𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5150rexbidva 3224 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5236, 51mpbid 231 1 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  cres 5582  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  cexp 13710  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126
This theorem is referenced by:  iscmet3lem1  24360  iscmet3lem2  24361
  Copyright terms: Public domain W3C validator