Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem3 Structured version   Visualization version   GIF version

Theorem iscmet3lem3 23908
 Description: Lemma for iscmet3 23911. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
iscmet3lem3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Distinct variable groups:   𝑗,𝑘,𝑅   𝑗,𝑍,𝑘   𝑗,𝑀,𝑘

Proof of Theorem iscmet3lem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iscmet3.1 . . 3 𝑍 = (ℤ𝑀)
2 simpl 486 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑀 ∈ ℤ)
3 simpr 488 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+)
4 eluzelz 12248 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
54, 1eleq2s 2908 . . . . 5 (𝑘𝑍𝑘 ∈ ℤ)
65adantl 485 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
7 oveq2 7148 . . . . 5 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
8 eqid 2798 . . . . 5 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))
9 ovex 7173 . . . . 5 ((1 / 2)↑𝑘) ∈ V
107, 8, 9fvmpt 6750 . . . 4 (𝑘 ∈ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
116, 10syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
12 nn0uz 12275 . . . . . . 7 0 = (ℤ‘0)
1312reseq2i 5816 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0))
14 nn0ssz 11998 . . . . . . 7 0 ⊆ ℤ
15 resmpt 5873 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
1614, 15ax-mp 5 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
1713, 16eqtr3i 2823 . . . . 5 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
18 halfcn 11847 . . . . . . 7 (1 / 2) ∈ ℂ
1918a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (1 / 2) ∈ ℂ)
20 halfre 11846 . . . . . . . . 9 (1 / 2) ∈ ℝ
21 halfge0 11849 . . . . . . . . 9 0 ≤ (1 / 2)
22 absid 14655 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2320, 21, 22mp2an 691 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
24 halflt1 11850 . . . . . . . 8 (1 / 2) < 1
2523, 24eqbrtri 5052 . . . . . . 7 (abs‘(1 / 2)) < 1
2625a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (abs‘(1 / 2)) < 1)
2719, 26expcnv 15218 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
2817, 27eqbrtrid 5066 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0)
29 0z 11987 . . . . 5 0 ∈ ℤ
30 zex 11985 . . . . . . 7 ℤ ∈ V
3130mptex 6968 . . . . . 6 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V
3231a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V)
33 climres 14931 . . . . 5 ((0 ∈ ℤ ∧ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3429, 32, 33sylancr 590 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3528, 34mpbid 235 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0)
361, 2, 3, 11, 35climi0 14868 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅)
371uztrn2 12257 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
38 1rp 12388 . . . . . . . . . 10 1 ∈ ℝ+
39 rphalfcl 12411 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
4038, 39ax-mp 5 . . . . . . . . 9 (1 / 2) ∈ ℝ+
41 rpexpcl 13451 . . . . . . . . 9 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
4240, 6, 41sylancr 590 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
43 rpre 12392 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → ((1 / 2)↑𝑘) ∈ ℝ)
44 rpge0 12397 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → 0 ≤ ((1 / 2)↑𝑘))
4543, 44absidd 14781 . . . . . . . 8 (((1 / 2)↑𝑘) ∈ ℝ+ → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4642, 45syl 17 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4746breq1d 5041 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4837, 47sylan2 595 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4948anassrs 471 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
5049ralbidva 3161 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∀𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5150rexbidva 3255 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5236, 51mpbid 235 1 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881   class class class wbr 5031   ↦ cmpt 5111   ↾ cres 5522  ‘cfv 6327  (class class class)co 7140  ℂcc 10531  ℝcr 10532  0cc0 10533  1c1 10534   < clt 10671   ≤ cle 10672   / cdiv 11293  2c2 11687  ℕ0cn0 11892  ℤcz 11976  ℤ≥cuz 12238  ℝ+crp 12384  ↑cexp 13432  abscabs 14592   ⇝ cli 14840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-pre-sup 10611 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-sup 8897  df-inf 8898  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-div 11294  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-fl 13164  df-seq 13372  df-exp 13433  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845 This theorem is referenced by:  iscmet3lem1  23909  iscmet3lem2  23910
 Copyright terms: Public domain W3C validator