MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem3 Structured version   Visualization version   GIF version

Theorem iscmet3lem3 24187
Description: Lemma for iscmet3 24190. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
iscmet3lem3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Distinct variable groups:   𝑗,𝑘,𝑅   𝑗,𝑍,𝑘   𝑗,𝑀,𝑘

Proof of Theorem iscmet3lem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iscmet3.1 . . 3 𝑍 = (ℤ𝑀)
2 simpl 486 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑀 ∈ ℤ)
3 simpr 488 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+)
4 eluzelz 12448 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
54, 1eleq2s 2856 . . . . 5 (𝑘𝑍𝑘 ∈ ℤ)
65adantl 485 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
7 oveq2 7221 . . . . 5 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
8 eqid 2737 . . . . 5 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))
9 ovex 7246 . . . . 5 ((1 / 2)↑𝑘) ∈ V
107, 8, 9fvmpt 6818 . . . 4 (𝑘 ∈ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
116, 10syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
12 nn0uz 12476 . . . . . . 7 0 = (ℤ‘0)
1312reseq2i 5848 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0))
14 nn0ssz 12198 . . . . . . 7 0 ⊆ ℤ
15 resmpt 5905 . . . . . . 7 (ℕ0 ⊆ ℤ → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
1614, 15ax-mp 5 . . . . . 6 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ ℕ0) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
1713, 16eqtr3i 2767 . . . . 5 ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
18 halfcn 12045 . . . . . . 7 (1 / 2) ∈ ℂ
1918a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (1 / 2) ∈ ℂ)
20 halfre 12044 . . . . . . . . 9 (1 / 2) ∈ ℝ
21 halfge0 12047 . . . . . . . . 9 0 ≤ (1 / 2)
22 absid 14860 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2320, 21, 22mp2an 692 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
24 halflt1 12048 . . . . . . . 8 (1 / 2) < 1
2523, 24eqbrtri 5074 . . . . . . 7 (abs‘(1 / 2)) < 1
2625a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (abs‘(1 / 2)) < 1)
2719, 26expcnv 15428 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) ⇝ 0)
2817, 27eqbrtrid 5088 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0)
29 0z 12187 . . . . 5 0 ∈ ℤ
30 zex 12185 . . . . . . 7 ℤ ∈ V
3130mptex 7039 . . . . . 6 (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V
3231a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V)
33 climres 15136 . . . . 5 ((0 ∈ ℤ ∧ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ∈ V) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3429, 32, 33sylancr 590 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (((𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ↾ (ℤ‘0)) ⇝ 0 ↔ (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0))
3528, 34mpbid 235 . . 3 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (𝑛 ∈ ℤ ↦ ((1 / 2)↑𝑛)) ⇝ 0)
361, 2, 3, 11, 35climi0 15073 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅)
371uztrn2 12457 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
38 1rp 12590 . . . . . . . . . 10 1 ∈ ℝ+
39 rphalfcl 12613 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
4038, 39ax-mp 5 . . . . . . . . 9 (1 / 2) ∈ ℝ+
41 rpexpcl 13654 . . . . . . . . 9 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
4240, 6, 41sylancr 590 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((1 / 2)↑𝑘) ∈ ℝ+)
43 rpre 12594 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → ((1 / 2)↑𝑘) ∈ ℝ)
44 rpge0 12599 . . . . . . . . 9 (((1 / 2)↑𝑘) ∈ ℝ+ → 0 ≤ ((1 / 2)↑𝑘))
4543, 44absidd 14986 . . . . . . . 8 (((1 / 2)↑𝑘) ∈ ℝ+ → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4642, 45syl 17 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((1 / 2)↑𝑘)) = ((1 / 2)↑𝑘))
4746breq1d 5063 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4837, 47sylan2 596 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
4948anassrs 471 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ((1 / 2)↑𝑘) < 𝑅))
5049ralbidva 3117 . . 3 (((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∀𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5150rexbidva 3215 . 2 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((1 / 2)↑𝑘)) < 𝑅 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅))
5236, 51mpbid 235 1 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  wss 3866   class class class wbr 5053  cmpt 5135  cres 5553  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   < clt 10867  cle 10868   / cdiv 11489  2c2 11885  0cn0 12090  cz 12176  cuz 12438  +crp 12586  cexp 13635  abscabs 14797  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fl 13367  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050
This theorem is referenced by:  iscmet3lem1  24188  iscmet3lem2  24189
  Copyright terms: Public domain W3C validator