| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcnvshft | Structured version Visualization version GIF version | ||
| Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| divcnvshft.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| divcnvshft.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| divcnvshft.3 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcnvshft.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| divcnvshft.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| divcnvshft.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) |
| Ref | Expression |
|---|---|
| divcnvshft | ⊢ (𝜑 → 𝐹 ⇝ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcnvshft.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcnv 15889 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 4 | nnssz 12635 | . . . . . . 7 ⊢ ℕ ⊆ ℤ | |
| 5 | resmpt 6055 | . . . . . . 7 ⊢ (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) |
| 7 | nnuz 12921 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 8 | 7 | reseq2i 5994 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
| 9 | 6, 8 | eqtr3i 2767 | . . . . 5 ⊢ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
| 10 | 9 | breq1i 5150 | . . . 4 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0) |
| 11 | 1z 12647 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 12 | zex 12622 | . . . . . 6 ⊢ ℤ ∈ V | |
| 13 | 12 | mptex 7243 | . . . . 5 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V |
| 14 | climres 15611 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) | |
| 15 | 11, 13, 14 | mp2an 692 | . . . 4 ⊢ (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 16 | 10, 15 | bitri 275 | . . 3 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 17 | 3, 16 | sylib 218 | . 2 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 18 | divcnvshft.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 19 | divcnvshft.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 20 | divcnvshft.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 21 | divcnvshft.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 22 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) |
| 23 | uzssz 12899 | . . . . . . . . 9 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 24 | 18, 23 | eqsstri 4030 | . . . . . . . 8 ⊢ 𝑍 ⊆ ℤ |
| 25 | 24 | sseli 3979 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
| 27 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℤ) |
| 28 | 26, 27 | zaddcld 12726 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐵) ∈ ℤ) |
| 29 | oveq2 7439 | . . . . . 6 ⊢ (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵))) | |
| 30 | eqid 2737 | . . . . . 6 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) | |
| 31 | ovex 7464 | . . . . . 6 ⊢ (𝐴 / (𝑘 + 𝐵)) ∈ V | |
| 32 | 29, 30, 31 | fvmpt 7016 | . . . . 5 ⊢ ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
| 33 | 28, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
| 34 | divcnvshft.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) | |
| 35 | 33, 34 | eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹‘𝑘)) |
| 36 | 18, 19, 20, 21, 22, 35 | climshft2 15618 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) |
| 37 | 17, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ⇝ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 0cc0 11155 1c1 11156 + caddc 11158 / cdiv 11920 ℕcn 12266 ℤcz 12613 ℤ≥cuz 12878 ⇝ cli 15520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fl 13832 df-seq 14043 df-exp 14103 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 |
| This theorem is referenced by: trireciplem 15898 lgamcvg2 27098 binomcxplemrat 44369 |
| Copyright terms: Public domain | W3C validator |