MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcnvshft Structured version   Visualization version   GIF version

Theorem divcnvshft 15747
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
divcnvshft.1 𝑍 = (ℤ𝑀)
divcnvshft.2 (𝜑𝑀 ∈ ℤ)
divcnvshft.3 (𝜑𝐴 ∈ ℂ)
divcnvshft.4 (𝜑𝐵 ∈ ℤ)
divcnvshft.5 (𝜑𝐹𝑉)
divcnvshft.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvshft (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 divcnvshft.3 . . . 4 (𝜑𝐴 ∈ ℂ)
2 divcnv 15745 . . . 4 (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
31, 2syl 17 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
4 nnssz 12528 . . . . . . 7 ℕ ⊆ ℤ
5 resmpt 5996 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)))
64, 5ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))
7 nnuz 12813 . . . . . . 7 ℕ = (ℤ‘1)
87reseq2i 5939 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
96, 8eqtr3i 2767 . . . . 5 (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
109breq1i 5117 . . . 4 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0)
11 1z 12540 . . . . 5 1 ∈ ℤ
12 zex 12515 . . . . . 6 ℤ ∈ V
1312mptex 7178 . . . . 5 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V
14 climres 15464 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
1511, 13, 14mp2an 691 . . . 4 (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
1610, 15bitri 275 . . 3 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
173, 16sylib 217 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
18 divcnvshft.1 . . 3 𝑍 = (ℤ𝑀)
19 divcnvshft.2 . . 3 (𝜑𝑀 ∈ ℤ)
20 divcnvshft.4 . . 3 (𝜑𝐵 ∈ ℤ)
21 divcnvshft.5 . . 3 (𝜑𝐹𝑉)
2213a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V)
23 uzssz 12791 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
2418, 23eqsstri 3983 . . . . . . . 8 𝑍 ⊆ ℤ
2524sseli 3945 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
2625adantl 483 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
2720adantr 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
2826, 27zaddcld 12618 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
29 oveq2 7370 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵)))
30 eqid 2737 . . . . . 6 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))
31 ovex 7395 . . . . . 6 (𝐴 / (𝑘 + 𝐵)) ∈ V
3229, 30, 31fvmpt 6953 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
3328, 32syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
34 divcnvshft.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
3533, 34eqtr4d 2780 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
3618, 19, 20, 21, 22, 35climshft2 15471 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
3717, 36mpbird 257 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3448  wss 3915   class class class wbr 5110  cmpt 5193  cres 5640  cfv 6501  (class class class)co 7362  cc 11056  0cc0 11058  1c1 11059   + caddc 11061   / cdiv 11819  cn 12160  cz 12506  cuz 12770  cli 15373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fl 13704  df-seq 13914  df-exp 13975  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378
This theorem is referenced by:  trireciplem  15754  lgamcvg2  26420  binomcxplemrat  42704
  Copyright terms: Public domain W3C validator