Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divcnvshft | Structured version Visualization version GIF version |
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
divcnvshft.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
divcnvshft.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
divcnvshft.3 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcnvshft.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
divcnvshft.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
divcnvshft.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) |
Ref | Expression |
---|---|
divcnvshft | ⊢ (𝜑 → 𝐹 ⇝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcnvshft.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcnv 15637 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) |
4 | nnssz 12413 | . . . . . . 7 ⊢ ℕ ⊆ ℤ | |
5 | resmpt 5964 | . . . . . . 7 ⊢ (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) |
7 | nnuz 12694 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
8 | 7 | reseq2i 5907 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
9 | 6, 8 | eqtr3i 2767 | . . . . 5 ⊢ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
10 | 9 | breq1i 5094 | . . . 4 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0) |
11 | 1z 12423 | . . . . 5 ⊢ 1 ∈ ℤ | |
12 | zex 12401 | . . . . . 6 ⊢ ℤ ∈ V | |
13 | 12 | mptex 7138 | . . . . 5 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V |
14 | climres 15356 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) | |
15 | 11, 13, 14 | mp2an 689 | . . . 4 ⊢ (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
16 | 10, 15 | bitri 274 | . . 3 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
17 | 3, 16 | sylib 217 | . 2 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
18 | divcnvshft.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
19 | divcnvshft.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
20 | divcnvshft.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
21 | divcnvshft.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
22 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) |
23 | uzssz 12676 | . . . . . . . . 9 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
24 | 18, 23 | eqsstri 3965 | . . . . . . . 8 ⊢ 𝑍 ⊆ ℤ |
25 | 24 | sseli 3927 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
26 | 25 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
27 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℤ) |
28 | 26, 27 | zaddcld 12503 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐵) ∈ ℤ) |
29 | oveq2 7323 | . . . . . 6 ⊢ (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵))) | |
30 | eqid 2737 | . . . . . 6 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) | |
31 | ovex 7348 | . . . . . 6 ⊢ (𝐴 / (𝑘 + 𝐵)) ∈ V | |
32 | 29, 30, 31 | fvmpt 6914 | . . . . 5 ⊢ ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
33 | 28, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
34 | divcnvshft.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) | |
35 | 33, 34 | eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹‘𝑘)) |
36 | 18, 19, 20, 21, 22, 35 | climshft2 15363 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) |
37 | 17, 36 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 ⇝ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3897 class class class wbr 5087 ↦ cmpt 5170 ↾ cres 5609 ‘cfv 6465 (class class class)co 7315 ℂcc 10942 0cc0 10944 1c1 10945 + caddc 10947 / cdiv 11705 ℕcn 12046 ℤcz 12392 ℤ≥cuz 12655 ⇝ cli 15265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-rp 12804 df-fl 13585 df-seq 13795 df-exp 13856 df-shft 14850 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-clim 15269 df-rlim 15270 |
This theorem is referenced by: trireciplem 15646 lgamcvg2 26276 binomcxplemrat 42189 |
Copyright terms: Public domain | W3C validator |