| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divcnvshft | Structured version Visualization version GIF version | ||
| Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| divcnvshft.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| divcnvshft.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| divcnvshft.3 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcnvshft.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| divcnvshft.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| divcnvshft.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) |
| Ref | Expression |
|---|---|
| divcnvshft | ⊢ (𝜑 → 𝐹 ⇝ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcnvshft.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcnv 15760 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 4 | nnssz 12490 | . . . . . . 7 ⊢ ℕ ⊆ ℤ | |
| 5 | resmpt 5985 | . . . . . . 7 ⊢ (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) |
| 7 | nnuz 12775 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 8 | 7 | reseq2i 5924 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
| 9 | 6, 8 | eqtr3i 2756 | . . . . 5 ⊢ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
| 10 | 9 | breq1i 5096 | . . . 4 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0) |
| 11 | 1z 12502 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 12 | zex 12477 | . . . . . 6 ⊢ ℤ ∈ V | |
| 13 | 12 | mptex 7157 | . . . . 5 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V |
| 14 | climres 15482 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) | |
| 15 | 11, 13, 14 | mp2an 692 | . . . 4 ⊢ (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 16 | 10, 15 | bitri 275 | . . 3 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 17 | 3, 16 | sylib 218 | . 2 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 18 | divcnvshft.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 19 | divcnvshft.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 20 | divcnvshft.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 21 | divcnvshft.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 22 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) |
| 23 | uzssz 12753 | . . . . . . . . 9 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 24 | 18, 23 | eqsstri 3976 | . . . . . . . 8 ⊢ 𝑍 ⊆ ℤ |
| 25 | 24 | sseli 3925 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
| 27 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℤ) |
| 28 | 26, 27 | zaddcld 12581 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐵) ∈ ℤ) |
| 29 | oveq2 7354 | . . . . . 6 ⊢ (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵))) | |
| 30 | eqid 2731 | . . . . . 6 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) | |
| 31 | ovex 7379 | . . . . . 6 ⊢ (𝐴 / (𝑘 + 𝐵)) ∈ V | |
| 32 | 29, 30, 31 | fvmpt 6929 | . . . . 5 ⊢ ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
| 33 | 28, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
| 34 | divcnvshft.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) | |
| 35 | 33, 34 | eqtr4d 2769 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹‘𝑘)) |
| 36 | 18, 19, 20, 21, 22, 35 | climshft2 15489 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) |
| 37 | 17, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ⇝ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 / cdiv 11774 ℕcn 12125 ℤcz 12468 ℤ≥cuz 12732 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-seq 13909 df-exp 13969 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 |
| This theorem is referenced by: trireciplem 15769 lgamcvg2 26992 binomcxplemrat 44453 |
| Copyright terms: Public domain | W3C validator |