Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divcnvshft | Structured version Visualization version GIF version |
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
divcnvshft.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
divcnvshft.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
divcnvshft.3 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcnvshft.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
divcnvshft.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
divcnvshft.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) |
Ref | Expression |
---|---|
divcnvshft | ⊢ (𝜑 → 𝐹 ⇝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcnvshft.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcnv 15417 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) |
4 | nnssz 12197 | . . . . . . 7 ⊢ ℕ ⊆ ℤ | |
5 | resmpt 5905 | . . . . . . 7 ⊢ (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) |
7 | nnuz 12477 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
8 | 7 | reseq2i 5848 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
9 | 6, 8 | eqtr3i 2767 | . . . . 5 ⊢ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
10 | 9 | breq1i 5060 | . . . 4 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0) |
11 | 1z 12207 | . . . . 5 ⊢ 1 ∈ ℤ | |
12 | zex 12185 | . . . . . 6 ⊢ ℤ ∈ V | |
13 | 12 | mptex 7039 | . . . . 5 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V |
14 | climres 15136 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) | |
15 | 11, 13, 14 | mp2an 692 | . . . 4 ⊢ (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
16 | 10, 15 | bitri 278 | . . 3 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
17 | 3, 16 | sylib 221 | . 2 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
18 | divcnvshft.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
19 | divcnvshft.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
20 | divcnvshft.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
21 | divcnvshft.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
22 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) |
23 | uzssz 12459 | . . . . . . . . 9 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
24 | 18, 23 | eqsstri 3935 | . . . . . . . 8 ⊢ 𝑍 ⊆ ℤ |
25 | 24 | sseli 3896 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
26 | 25 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
27 | 20 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℤ) |
28 | 26, 27 | zaddcld 12286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐵) ∈ ℤ) |
29 | oveq2 7221 | . . . . . 6 ⊢ (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵))) | |
30 | eqid 2737 | . . . . . 6 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) | |
31 | ovex 7246 | . . . . . 6 ⊢ (𝐴 / (𝑘 + 𝐵)) ∈ V | |
32 | 29, 30, 31 | fvmpt 6818 | . . . . 5 ⊢ ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
33 | 28, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
34 | divcnvshft.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) | |
35 | 33, 34 | eqtr4d 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹‘𝑘)) |
36 | 18, 19, 20, 21, 22, 35 | climshft2 15143 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) |
37 | 17, 36 | mpbird 260 | 1 ⊢ (𝜑 → 𝐹 ⇝ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 class class class wbr 5053 ↦ cmpt 5135 ↾ cres 5553 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 1c1 10730 + caddc 10732 / cdiv 11489 ℕcn 11830 ℤcz 12176 ℤ≥cuz 12438 ⇝ cli 15045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fl 13367 df-seq 13575 df-exp 13636 df-shft 14630 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-rlim 15050 |
This theorem is referenced by: trireciplem 15426 lgamcvg2 25937 binomcxplemrat 41641 |
Copyright terms: Public domain | W3C validator |