![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divcnvshft | Structured version Visualization version GIF version |
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
divcnvshft.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
divcnvshft.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
divcnvshft.3 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcnvshft.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
divcnvshft.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
divcnvshft.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) |
Ref | Expression |
---|---|
divcnvshft | ⊢ (𝜑 → 𝐹 ⇝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcnvshft.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcnv 15901 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) |
4 | nnssz 12661 | . . . . . . 7 ⊢ ℕ ⊆ ℤ | |
5 | resmpt 6066 | . . . . . . 7 ⊢ (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) |
7 | nnuz 12946 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
8 | 7 | reseq2i 6006 | . . . . . 6 ⊢ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
9 | 6, 8 | eqtr3i 2770 | . . . . 5 ⊢ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) |
10 | 9 | breq1i 5173 | . . . 4 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0) |
11 | 1z 12673 | . . . . 5 ⊢ 1 ∈ ℤ | |
12 | zex 12648 | . . . . . 6 ⊢ ℤ ∈ V | |
13 | 12 | mptex 7260 | . . . . 5 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V |
14 | climres 15621 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) | |
15 | 11, 13, 14 | mp2an 691 | . . . 4 ⊢ (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ≥‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
16 | 10, 15 | bitri 275 | . . 3 ⊢ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
17 | 3, 16 | sylib 218 | . 2 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0) |
18 | divcnvshft.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
19 | divcnvshft.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
20 | divcnvshft.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
21 | divcnvshft.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
22 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) |
23 | uzssz 12924 | . . . . . . . . 9 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
24 | 18, 23 | eqsstri 4043 | . . . . . . . 8 ⊢ 𝑍 ⊆ ℤ |
25 | 24 | sseli 4004 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
27 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℤ) |
28 | 26, 27 | zaddcld 12751 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐵) ∈ ℤ) |
29 | oveq2 7456 | . . . . . 6 ⊢ (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵))) | |
30 | eqid 2740 | . . . . . 6 ⊢ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) | |
31 | ovex 7481 | . . . . . 6 ⊢ (𝐴 / (𝑘 + 𝐵)) ∈ V | |
32 | 29, 30, 31 | fvmpt 7029 | . . . . 5 ⊢ ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
33 | 28, 32 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵))) |
34 | divcnvshft.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐴 / (𝑘 + 𝐵))) | |
35 | 33, 34 | eqtr4d 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹‘𝑘)) |
36 | 18, 19, 20, 21, 22, 35 | climshft2 15628 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)) |
37 | 17, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ⇝ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 / cdiv 11947 ℕcn 12293 ℤcz 12639 ℤ≥cuz 12903 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fl 13843 df-seq 14053 df-exp 14113 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 |
This theorem is referenced by: trireciplem 15910 lgamcvg2 27116 binomcxplemrat 44319 |
Copyright terms: Public domain | W3C validator |