MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcnvshft Structured version   Visualization version   GIF version

Theorem divcnvshft 15831
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
divcnvshft.1 𝑍 = (ℤ𝑀)
divcnvshft.2 (𝜑𝑀 ∈ ℤ)
divcnvshft.3 (𝜑𝐴 ∈ ℂ)
divcnvshft.4 (𝜑𝐵 ∈ ℤ)
divcnvshft.5 (𝜑𝐹𝑉)
divcnvshft.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvshft (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 divcnvshft.3 . . . 4 (𝜑𝐴 ∈ ℂ)
2 divcnv 15829 . . . 4 (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
31, 2syl 17 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
4 nnssz 12608 . . . . . . 7 ℕ ⊆ ℤ
5 resmpt 6036 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)))
64, 5ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))
7 nnuz 12893 . . . . . . 7 ℕ = (ℤ‘1)
87reseq2i 5976 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
96, 8eqtr3i 2755 . . . . 5 (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
109breq1i 5150 . . . 4 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0)
11 1z 12620 . . . . 5 1 ∈ ℤ
12 zex 12595 . . . . . 6 ℤ ∈ V
1312mptex 7230 . . . . 5 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V
14 climres 15549 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
1511, 13, 14mp2an 690 . . . 4 (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
1610, 15bitri 274 . . 3 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
173, 16sylib 217 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
18 divcnvshft.1 . . 3 𝑍 = (ℤ𝑀)
19 divcnvshft.2 . . 3 (𝜑𝑀 ∈ ℤ)
20 divcnvshft.4 . . 3 (𝜑𝐵 ∈ ℤ)
21 divcnvshft.5 . . 3 (𝜑𝐹𝑉)
2213a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V)
23 uzssz 12871 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
2418, 23eqsstri 4007 . . . . . . . 8 𝑍 ⊆ ℤ
2524sseli 3968 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
2625adantl 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
2720adantr 479 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
2826, 27zaddcld 12698 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
29 oveq2 7423 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵)))
30 eqid 2725 . . . . . 6 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))
31 ovex 7448 . . . . . 6 (𝐴 / (𝑘 + 𝐵)) ∈ V
3229, 30, 31fvmpt 6999 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
3328, 32syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
34 divcnvshft.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
3533, 34eqtr4d 2768 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
3618, 19, 20, 21, 22, 35climshft2 15556 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
3717, 36mpbird 256 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  wss 3940   class class class wbr 5143  cmpt 5226  cres 5674  cfv 6542  (class class class)co 7415  cc 11134  0cc0 11136  1c1 11137   + caddc 11139   / cdiv 11899  cn 12240  cz 12586  cuz 12850  cli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fl 13787  df-seq 13997  df-exp 14057  df-shft 15044  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-clim 15462  df-rlim 15463
This theorem is referenced by:  trireciplem  15838  lgamcvg2  27003  binomcxplemrat  43851
  Copyright terms: Public domain W3C validator