MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcnvshft Structured version   Visualization version   GIF version

Theorem divcnvshft 15903
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
divcnvshft.1 𝑍 = (ℤ𝑀)
divcnvshft.2 (𝜑𝑀 ∈ ℤ)
divcnvshft.3 (𝜑𝐴 ∈ ℂ)
divcnvshft.4 (𝜑𝐵 ∈ ℤ)
divcnvshft.5 (𝜑𝐹𝑉)
divcnvshft.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
Assertion
Ref Expression
divcnvshft (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem divcnvshft
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 divcnvshft.3 . . . 4 (𝜑𝐴 ∈ ℂ)
2 divcnv 15901 . . . 4 (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
31, 2syl 17 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0)
4 nnssz 12661 . . . . . . 7 ℕ ⊆ ℤ
5 resmpt 6066 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)))
64, 5ax-mp 5 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))
7 nnuz 12946 . . . . . . 7 ℕ = (ℤ‘1)
87reseq2i 6006 . . . . . 6 ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ ℕ) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
96, 8eqtr3i 2770 . . . . 5 (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1))
109breq1i 5173 . . . 4 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0)
11 1z 12673 . . . . 5 1 ∈ ℤ
12 zex 12648 . . . . . 6 ℤ ∈ V
1312mptex 7260 . . . . 5 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V
14 climres 15621 . . . . 5 ((1 ∈ ℤ ∧ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V) → (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
1511, 13, 14mp2an 691 . . . 4 (((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
1610, 15bitri 275 . . 3 ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
173, 16sylib 218 . 2 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0)
18 divcnvshft.1 . . 3 𝑍 = (ℤ𝑀)
19 divcnvshft.2 . . 3 (𝜑𝑀 ∈ ℤ)
20 divcnvshft.4 . . 3 (𝜑𝐵 ∈ ℤ)
21 divcnvshft.5 . . 3 (𝜑𝐹𝑉)
2213a1i 11 . . 3 (𝜑 → (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ∈ V)
23 uzssz 12924 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
2418, 23eqsstri 4043 . . . . . . . 8 𝑍 ⊆ ℤ
2524sseli 4004 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
2625adantl 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
2720adantr 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℤ)
2826, 27zaddcld 12751 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 𝐵) ∈ ℤ)
29 oveq2 7456 . . . . . 6 (𝑚 = (𝑘 + 𝐵) → (𝐴 / 𝑚) = (𝐴 / (𝑘 + 𝐵)))
30 eqid 2740 . . . . . 6 (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))
31 ovex 7481 . . . . . 6 (𝐴 / (𝑘 + 𝐵)) ∈ V
3229, 30, 31fvmpt 7029 . . . . 5 ((𝑘 + 𝐵) ∈ ℤ → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
3328, 32syl 17 . . . 4 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐴 / (𝑘 + 𝐵)))
34 divcnvshft.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐴 / (𝑘 + 𝐵)))
3533, 34eqtr4d 2783 . . 3 ((𝜑𝑘𝑍) → ((𝑚 ∈ ℤ ↦ (𝐴 / 𝑚))‘(𝑘 + 𝐵)) = (𝐹𝑘))
3618, 19, 20, 21, 22, 35climshft2 15628 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑚 ∈ ℤ ↦ (𝐴 / 𝑚)) ⇝ 0))
3717, 36mpbird 257 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  cres 5702  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   / cdiv 11947  cn 12293  cz 12639  cuz 12903  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-seq 14053  df-exp 14113  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535
This theorem is referenced by:  trireciplem  15910  lgamcvg2  27116  binomcxplemrat  44319
  Copyright terms: Public domain W3C validator