MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshft Structured version   Visualization version   GIF version

Theorem climshft 14794
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climshft ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))

Proof of Theorem climshft
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6983 . . . . . 6 (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀))
21breq1d 4939 . . . . 5 (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴))
3 breq1 4932 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
42, 3bibi12d 338 . . . 4 (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
54imbi2d 333 . . 3 (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))))
6 znegcl 11830 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
7 ovex 7008 . . . . . . 7 (𝑓 shift 𝑀) ∈ V
87climshftlem 14792 . . . . . 6 (-𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
96, 8syl 17 . . . . 5 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
10 eqid 2778 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
11 ovexd 7010 . . . . . 6 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V)
12 vex 3418 . . . . . . 7 𝑓 ∈ V
1312a1i 11 . . . . . 6 (𝑀 ∈ ℤ → 𝑓 ∈ V)
14 id 22 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
15 zcn 11798 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
16 eluzelcn 12070 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
1712shftcan1 14303 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
1815, 16, 17syl2an 586 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
1910, 11, 13, 14, 18climeq 14785 . . . . 5 (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴𝑓𝐴))
209, 19sylibd 231 . . . 4 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
2112climshftlem 14792 . . . 4 (𝑀 ∈ ℤ → (𝑓𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴))
2220, 21impbid 204 . . 3 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
235, 22vtoclg 3486 . 2 (𝐹𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
2423impcom 399 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  Vcvv 3415   class class class wbr 4929  cfv 6188  (class class class)co 6976  cc 10333  -cneg 10671  cz 11793  cuz 12058   shift cshi 14286  cli 14702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-shft 14287  df-clim 14706
This theorem is referenced by:  climshft2  14800  isershft  14881  cvgrat  15099  eftlub  15322  dvradcnv2  40101  binomcxplemnotnn0  40110
  Copyright terms: Public domain W3C validator