| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climshft | Structured version Visualization version GIF version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climshft | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀)) | |
| 2 | 1 | breq1d 5105 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴)) |
| 3 | breq1 5098 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
| 4 | 2, 3 | bibi12d 345 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
| 5 | 4 | imbi2d 340 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)))) |
| 6 | znegcl 12528 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℤ) | |
| 7 | ovex 7386 | . . . . . . 7 ⊢ (𝑓 shift 𝑀) ∈ V | |
| 8 | 7 | climshftlem 15499 | . . . . . 6 ⊢ (-𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) |
| 10 | eqid 2729 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 11 | ovexd 7388 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) | |
| 12 | vex 3442 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑓 ∈ V) |
| 14 | id 22 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 15 | zcn 12494 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 16 | eluzelcn 12765 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℂ) | |
| 17 | 12 | shftcan1 15008 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
| 18 | 15, 16, 17 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
| 19 | 10, 11, 13, 14, 18 | climeq 15492 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
| 20 | 9, 19 | sylibd 239 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → 𝑓 ⇝ 𝐴)) |
| 21 | 12 | climshftlem 15499 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) |
| 22 | 20, 21 | impbid 212 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
| 23 | 5, 22 | vtoclg 3511 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
| 24 | 23 | impcom 407 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 -cneg 11366 ℤcz 12489 ℤ≥cuz 12753 shift cshi 14991 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-shft 14992 df-clim 15413 |
| This theorem is referenced by: climshft2 15507 isershft 15589 cvgrat 15808 eftlub 16036 dvradcnv2 44323 binomcxplemnotnn0 44332 |
| Copyright terms: Public domain | W3C validator |