MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshft Structured version   Visualization version   GIF version

Theorem climshft 15285
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climshft ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))

Proof of Theorem climshft
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . . 6 (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀))
21breq1d 5084 . . . . 5 (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴))
3 breq1 5077 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
42, 3bibi12d 346 . . . 4 (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
54imbi2d 341 . . 3 (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))))
6 znegcl 12355 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
7 ovex 7308 . . . . . . 7 (𝑓 shift 𝑀) ∈ V
87climshftlem 15283 . . . . . 6 (-𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
96, 8syl 17 . . . . 5 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
10 eqid 2738 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
11 ovexd 7310 . . . . . 6 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V)
12 vex 3436 . . . . . . 7 𝑓 ∈ V
1312a1i 11 . . . . . 6 (𝑀 ∈ ℤ → 𝑓 ∈ V)
14 id 22 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
15 zcn 12324 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
16 eluzelcn 12594 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
1712shftcan1 14794 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
1815, 16, 17syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
1910, 11, 13, 14, 18climeq 15276 . . . . 5 (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴𝑓𝐴))
209, 19sylibd 238 . . . 4 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
2112climshftlem 15283 . . . 4 (𝑀 ∈ ℤ → (𝑓𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴))
2220, 21impbid 211 . . 3 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
235, 22vtoclg 3505 . 2 (𝐹𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
2423impcom 408 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  -cneg 11206  cz 12319  cuz 12582   shift cshi 14777  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-shft 14778  df-clim 15197
This theorem is referenced by:  climshft2  15291  isershft  15375  cvgrat  15595  eftlub  15818  dvradcnv2  41965  binomcxplemnotnn0  41974
  Copyright terms: Public domain W3C validator