| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resscdrg | Structured version Visualization version GIF version | ||
| Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| resscdrg.1 | ⊢ 𝐹 = (ℂfld ↾s 𝐾) |
| Ref | Expression |
|---|---|
| resscdrg | ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtop 24647 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 3 | ax-resscn 11101 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 4 | qssre 12894 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
| 5 | unicntop 24649 | . . . . . 6 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
| 6 | tgioo4 24669 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 7 | 5, 6 | restcls 23044 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ℂ ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ)) |
| 8 | 2, 3, 4, 7 | mp3an 1463 | . . . 4 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) |
| 9 | qdensere 24633 | . . . 4 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 10 | 8, 9 | eqtr3i 2754 | . . 3 ⊢ (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ |
| 11 | sseqin2 4182 | . . 3 ⊢ (ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ) ↔ (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ) | |
| 12 | 10, 11 | mpbir 231 | . 2 ⊢ ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ) |
| 13 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐹 ∈ CMetSp) | |
| 14 | cncms 25231 | . . . . 5 ⊢ ℂfld ∈ CMetSp | |
| 15 | cnfldbas 21244 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 16 | 15 | subrgss 20457 | . . . . . 6 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 17 | 16 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ⊆ ℂ) |
| 18 | resscdrg.1 | . . . . . 6 ⊢ 𝐹 = (ℂfld ↾s 𝐾) | |
| 19 | 18, 15, 1 | cmsss 25227 | . . . . 5 ⊢ ((ℂfld ∈ CMetSp ∧ 𝐾 ⊆ ℂ) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)))) |
| 20 | 14, 17, 19 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)))) |
| 21 | 13, 20 | mpbid 232 | . . 3 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))) |
| 22 | 18 | eleq1i 2819 | . . . . 5 ⊢ (𝐹 ∈ DivRing ↔ (ℂfld ↾s 𝐾) ∈ DivRing) |
| 23 | qsssubdrg 21319 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing) → ℚ ⊆ 𝐾) | |
| 24 | 22, 23 | sylan2b 594 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing) → ℚ ⊆ 𝐾) |
| 25 | 24 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℚ ⊆ 𝐾) |
| 26 | 5 | clsss2 22935 | . . 3 ⊢ ((𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ℚ ⊆ 𝐾) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾) |
| 27 | 21, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾) |
| 28 | 12, 27 | sstrid 3955 | 1 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 ℚcq 12883 (,)cioo 13282 ↾s cress 17176 TopOpenctopn 17360 topGenctg 17376 SubRingcsubrg 20454 DivRingcdr 20614 ℂfldccnfld 21240 Topctop 22756 Clsdccld 22879 clsccl 22881 CMetSpccms 25208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-subrg 20455 df-drng 20616 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-cn 23090 df-cnp 23091 df-haus 23178 df-cmp 23250 df-tx 23425 df-hmeo 23618 df-fil 23709 df-flim 23802 df-fcls 23804 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-cfil 25131 df-cmet 25133 df-cms 25211 |
| This theorem is referenced by: cncdrg 25235 hlress 25244 |
| Copyright terms: Public domain | W3C validator |