| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resscdrg | Structured version Visualization version GIF version | ||
| Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| resscdrg.1 | ⊢ 𝐹 = (ℂfld ↾s 𝐾) |
| Ref | Expression |
|---|---|
| resscdrg | ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtop 24693 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 3 | ax-resscn 11058 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 4 | qssre 12852 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
| 5 | unicntop 24695 | . . . . . 6 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
| 6 | tgioo4 24715 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 7 | 5, 6 | restcls 23091 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ℂ ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ)) |
| 8 | 2, 3, 4, 7 | mp3an 1463 | . . . 4 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) |
| 9 | qdensere 24679 | . . . 4 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 10 | 8, 9 | eqtr3i 2756 | . . 3 ⊢ (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ |
| 11 | sseqin2 4168 | . . 3 ⊢ (ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ) ↔ (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ) | |
| 12 | 10, 11 | mpbir 231 | . 2 ⊢ ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ) |
| 13 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐹 ∈ CMetSp) | |
| 14 | cncms 25277 | . . . . 5 ⊢ ℂfld ∈ CMetSp | |
| 15 | cnfldbas 21290 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 16 | 15 | subrgss 20482 | . . . . . 6 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 17 | 16 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ⊆ ℂ) |
| 18 | resscdrg.1 | . . . . . 6 ⊢ 𝐹 = (ℂfld ↾s 𝐾) | |
| 19 | 18, 15, 1 | cmsss 25273 | . . . . 5 ⊢ ((ℂfld ∈ CMetSp ∧ 𝐾 ⊆ ℂ) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)))) |
| 20 | 14, 17, 19 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)))) |
| 21 | 13, 20 | mpbid 232 | . . 3 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))) |
| 22 | 18 | eleq1i 2822 | . . . . 5 ⊢ (𝐹 ∈ DivRing ↔ (ℂfld ↾s 𝐾) ∈ DivRing) |
| 23 | qsssubdrg 21358 | . . . . 5 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing) → ℚ ⊆ 𝐾) | |
| 24 | 22, 23 | sylan2b 594 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing) → ℚ ⊆ 𝐾) |
| 25 | 24 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℚ ⊆ 𝐾) |
| 26 | 5 | clsss2 22982 | . . 3 ⊢ ((𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ℚ ⊆ 𝐾) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾) |
| 27 | 21, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾) |
| 28 | 12, 27 | sstrid 3941 | 1 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ran crn 5612 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 ℚcq 12841 (,)cioo 13240 ↾s cress 17136 TopOpenctopn 17320 topGenctg 17336 SubRingcsubrg 20479 DivRingcdr 20639 ℂfldccnfld 21286 Topctop 22803 Clsdccld 22926 clsccl 22928 CMetSpccms 25254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-subrg 20480 df-drng 20641 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-cn 23137 df-cnp 23138 df-haus 23225 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-flim 23849 df-fcls 23851 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-cfil 25177 df-cmet 25179 df-cms 25257 |
| This theorem is referenced by: cncdrg 25281 hlress 25290 |
| Copyright terms: Public domain | W3C validator |