MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscdrg Structured version   Visualization version   GIF version

Theorem resscdrg 25406
Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
resscdrg.1 𝐹 = (ℂflds 𝐾)
Assertion
Ref Expression
resscdrg ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾)

Proof of Theorem resscdrg
StepHypRef Expression
1 eqid 2735 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 24820 . . . . 5 (TopOpen‘ℂfld) ∈ Top
3 ax-resscn 11210 . . . . 5 ℝ ⊆ ℂ
4 qssre 12999 . . . . 5 ℚ ⊆ ℝ
5 unicntop 24822 . . . . . 6 ℂ = (TopOpen‘ℂfld)
61tgioo2 24839 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6restcls 23205 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ℂ ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ))
82, 3, 4, 7mp3an 1460 . . . 4 ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ)
9 qdensere 24806 . . . 4 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
108, 9eqtr3i 2765 . . 3 (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ
11 sseqin2 4231 . . 3 (ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ) ↔ (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ)
1210, 11mpbir 231 . 2 ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ)
13 simp3 1137 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐹 ∈ CMetSp)
14 cncms 25403 . . . . 5 fld ∈ CMetSp
15 cnfldbas 21386 . . . . . . 7 ℂ = (Base‘ℂfld)
1615subrgss 20589 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
17163ad2ant1 1132 . . . . 5 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ⊆ ℂ)
18 resscdrg.1 . . . . . 6 𝐹 = (ℂflds 𝐾)
1918, 15, 1cmsss 25399 . . . . 5 ((ℂfld ∈ CMetSp ∧ 𝐾 ⊆ ℂ) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))))
2014, 17, 19sylancr 587 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))))
2113, 20mpbid 232 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)))
2218eleq1i 2830 . . . . 5 (𝐹 ∈ DivRing ↔ (ℂflds 𝐾) ∈ DivRing)
23 qsssubdrg 21462 . . . . 5 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing) → ℚ ⊆ 𝐾)
2422, 23sylan2b 594 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing) → ℚ ⊆ 𝐾)
25243adant3 1131 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℚ ⊆ 𝐾)
265clsss2 23096 . . 3 ((𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ℚ ⊆ 𝐾) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾)
2721, 25, 26syl2anc 584 . 2 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾)
2812, 27sstrid 4007 1 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  cin 3962  wss 3963  ran crn 5690  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  cq 12988  (,)cioo 13384  s cress 17274  TopOpenctopn 17468  topGenctg 17484  SubRingcsubrg 20586  DivRingcdr 20746  fldccnfld 21382  Topctop 22915  Clsdccld 23040  clsccl 23042  CMetSpccms 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrg 20587  df-drng 20748  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-flim 23963  df-fcls 23965  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-cfil 25303  df-cmet 25305  df-cms 25383
This theorem is referenced by:  cncdrg  25407  hlress  25416
  Copyright terms: Public domain W3C validator