MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscdrg Structured version   Visualization version   GIF version

Theorem resscdrg 23958
Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
resscdrg.1 𝐹 = (ℂflds 𝐾)
Assertion
Ref Expression
resscdrg ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾)

Proof of Theorem resscdrg
StepHypRef Expression
1 eqid 2824 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 23385 . . . . 5 (TopOpen‘ℂfld) ∈ Top
3 ax-resscn 10586 . . . . 5 ℝ ⊆ ℂ
4 qssre 12351 . . . . 5 ℚ ⊆ ℝ
5 unicntop 23387 . . . . . 6 ℂ = (TopOpen‘ℂfld)
61tgioo2 23404 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6restcls 21782 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ℂ ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ))
82, 3, 4, 7mp3an 1458 . . . 4 ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ)
9 qdensere 23371 . . . 4 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
108, 9eqtr3i 2849 . . 3 (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ
11 sseqin2 4176 . . 3 (ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ) ↔ (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ)
1210, 11mpbir 234 . 2 ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ)
13 simp3 1135 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐹 ∈ CMetSp)
14 cncms 23955 . . . . 5 fld ∈ CMetSp
15 cnfldbas 20542 . . . . . . 7 ℂ = (Base‘ℂfld)
1615subrgss 19529 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
17163ad2ant1 1130 . . . . 5 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ⊆ ℂ)
18 resscdrg.1 . . . . . 6 𝐹 = (ℂflds 𝐾)
1918, 15, 1cmsss 23951 . . . . 5 ((ℂfld ∈ CMetSp ∧ 𝐾 ⊆ ℂ) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))))
2014, 17, 19sylancr 590 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))))
2113, 20mpbid 235 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)))
2218eleq1i 2906 . . . . 5 (𝐹 ∈ DivRing ↔ (ℂflds 𝐾) ∈ DivRing)
23 qsssubdrg 20597 . . . . 5 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing) → ℚ ⊆ 𝐾)
2422, 23sylan2b 596 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing) → ℚ ⊆ 𝐾)
25243adant3 1129 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℚ ⊆ 𝐾)
265clsss2 21673 . . 3 ((𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ℚ ⊆ 𝐾) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾)
2721, 25, 26syl2anc 587 . 2 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾)
2812, 27sstrid 3963 1 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2115  cin 3918  wss 3919  ran crn 5543  cfv 6343  (class class class)co 7145  cc 10527  cr 10528  cq 12341  (,)cioo 12731  s cress 16480  TopOpenctopn 16691  topGenctg 16707  DivRingcdr 19495  SubRingcsubrg 19524  fldccnfld 20538  Topctop 21494  Clsdccld 21617  clsccl 21619  CMetSpccms 23932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-tpos 7882  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-map 8398  df-ixp 8452  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-fi 8866  df-sup 8897  df-inf 8898  df-oi 8965  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-z 11975  df-dec 12092  df-uz 12237  df-q 12342  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12891  df-fzo 13034  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-mulg 18221  df-subg 18272  df-cntz 18443  df-cmn 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-psmet 20530  df-xmet 20531  df-met 20532  df-bl 20533  df-mopn 20534  df-fbas 20535  df-fg 20536  df-cnfld 20539  df-top 21495  df-topon 21512  df-topsp 21534  df-bases 21547  df-cld 21620  df-ntr 21621  df-cls 21622  df-nei 21699  df-cn 21828  df-cnp 21829  df-haus 21916  df-cmp 21988  df-tx 22163  df-hmeo 22356  df-fil 22447  df-flim 22540  df-fcls 22542  df-xms 22923  df-ms 22924  df-tms 22925  df-cncf 23479  df-cfil 23855  df-cmet 23857  df-cms 23935
This theorem is referenced by:  cncdrg  23959  hlress  23968
  Copyright terms: Public domain W3C validator