MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscdrg Structured version   Visualization version   GIF version

Theorem resscdrg 25280
Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
resscdrg.1 𝐹 = (ℂflds 𝐾)
Assertion
Ref Expression
resscdrg ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾)

Proof of Theorem resscdrg
StepHypRef Expression
1 eqid 2731 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtop 24693 . . . . 5 (TopOpen‘ℂfld) ∈ Top
3 ax-resscn 11058 . . . . 5 ℝ ⊆ ℂ
4 qssre 12852 . . . . 5 ℚ ⊆ ℝ
5 unicntop 24695 . . . . . 6 ℂ = (TopOpen‘ℂfld)
6 tgioo4 24715 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
75, 6restcls 23091 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ℝ ⊆ ℂ ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ))
82, 3, 4, 7mp3an 1463 . . . 4 ((cls‘(topGen‘ran (,)))‘ℚ) = (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ)
9 qdensere 24679 . . . 4 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
108, 9eqtr3i 2756 . . 3 (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ
11 sseqin2 4168 . . 3 (ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ) ↔ (((cls‘(TopOpen‘ℂfld))‘ℚ) ∩ ℝ) = ℝ)
1210, 11mpbir 231 . 2 ℝ ⊆ ((cls‘(TopOpen‘ℂfld))‘ℚ)
13 simp3 1138 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐹 ∈ CMetSp)
14 cncms 25277 . . . . 5 fld ∈ CMetSp
15 cnfldbas 21290 . . . . . . 7 ℂ = (Base‘ℂfld)
1615subrgss 20482 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
17163ad2ant1 1133 . . . . 5 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ⊆ ℂ)
18 resscdrg.1 . . . . . 6 𝐹 = (ℂflds 𝐾)
1918, 15, 1cmsss 25273 . . . . 5 ((ℂfld ∈ CMetSp ∧ 𝐾 ⊆ ℂ) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))))
2014, 17, 19sylancr 587 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld))))
2113, 20mpbid 232 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)))
2218eleq1i 2822 . . . . 5 (𝐹 ∈ DivRing ↔ (ℂflds 𝐾) ∈ DivRing)
23 qsssubdrg 21358 . . . . 5 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing) → ℚ ⊆ 𝐾)
2422, 23sylan2b 594 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing) → ℚ ⊆ 𝐾)
25243adant3 1132 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℚ ⊆ 𝐾)
265clsss2 22982 . . 3 ((𝐾 ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ℚ ⊆ 𝐾) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾)
2721, 25, 26syl2anc 584 . 2 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ((cls‘(TopOpen‘ℂfld))‘ℚ) ⊆ 𝐾)
2812, 27sstrid 3941 1 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  ran crn 5612  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  cq 12841  (,)cioo 13240  s cress 17136  TopOpenctopn 17320  topGenctg 17336  SubRingcsubrg 20479  DivRingcdr 20639  fldccnfld 21286  Topctop 22803  Clsdccld 22926  clsccl 22928  CMetSpccms 25254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-subrg 20480  df-drng 20641  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-flim 23849  df-fcls 23851  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-cfil 25177  df-cmet 25179  df-cms 25257
This theorem is referenced by:  cncdrg  25281  hlress  25290
  Copyright terms: Public domain W3C validator