| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmetdval | Structured version Visualization version GIF version | ||
| Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnmetdval.1 | ⊢ 𝐷 = (abs ∘ − ) |
| Ref | Expression |
|---|---|
| cnmetdval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subf 11362 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 2 | opelxpi 5651 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) | |
| 3 | fvco3 6921 | . . 3 ⊢ (( − :(ℂ × ℂ)⟶ℂ ∧ 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) |
| 5 | df-ov 7349 | . . 3 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 6 | cnmetdval.1 | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
| 7 | 6 | fveq1i 6823 | . . 3 ⊢ (𝐷‘〈𝐴, 𝐵〉) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 8 | 5, 7 | eqtri 2754 | . 2 ⊢ (𝐴𝐷𝐵) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 9 | df-ov 7349 | . . 3 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
| 10 | 9 | fveq2i 6825 | . 2 ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘( − ‘〈𝐴, 𝐵〉)) |
| 11 | 4, 8, 10 | 3eqtr4g 2791 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 × cxp 5612 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 − cmin 11344 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 |
| This theorem is referenced by: cnmet 24686 cnbl0 24688 cnblcld 24689 cnfldnm 24693 remetdval 24704 blcvx 24713 recld2 24730 zdis 24732 reperflem 24734 addcnlem 24780 divcnOLD 24784 divcn 24786 cncfmet 24829 cnheibor 24881 cnllycmp 24882 ipcn 25173 lmclim 25230 cncmet 25249 ovolfsval 25398 ellimc3 25807 lhop1lem 25945 ftc1lem6 25975 ulmdvlem1 26336 psercn 26363 pserdvlem2 26365 abelthlem2 26369 abelthlem3 26370 abelthlem5 26372 abelthlem7 26375 abelth 26378 dvlog2lem 26588 efopn 26594 logtayl 26596 logtayl2 26598 cxpcn3 26685 rlimcnp 26902 xrlimcnp 26905 efrlim 26906 efrlimOLD 26907 lgamucov 26975 lgamcvg2 26992 ftalem3 27012 smcnlem 30677 hhcnf 31885 tpr2rico 33925 qqhcn 34004 qqhucn 34005 ftc1cnnc 37742 cntotbnd 37846 iccbnd 37890 cnmetcoval 45309 iooabslt 45609 limcrecl 45739 islpcn 45747 stirlinglem5 46186 ovolval2lem 46751 ovolval3 46755 |
| Copyright terms: Public domain | W3C validator |