| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmetdval | Structured version Visualization version GIF version | ||
| Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnmetdval.1 | ⊢ 𝐷 = (abs ∘ − ) |
| Ref | Expression |
|---|---|
| cnmetdval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subf 11365 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 2 | opelxpi 5656 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) | |
| 3 | fvco3 6922 | . . 3 ⊢ (( − :(ℂ × ℂ)⟶ℂ ∧ 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) |
| 5 | df-ov 7352 | . . 3 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 6 | cnmetdval.1 | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
| 7 | 6 | fveq1i 6823 | . . 3 ⊢ (𝐷‘〈𝐴, 𝐵〉) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 8 | 5, 7 | eqtri 2752 | . 2 ⊢ (𝐴𝐷𝐵) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 9 | df-ov 7352 | . . 3 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
| 10 | 9 | fveq2i 6825 | . 2 ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘( − ‘〈𝐴, 𝐵〉)) |
| 11 | 4, 8, 10 | 3eqtr4g 2789 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 × cxp 5617 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 − cmin 11347 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 |
| This theorem is referenced by: cnmet 24657 cnbl0 24659 cnblcld 24660 cnfldnm 24664 remetdval 24675 blcvx 24684 recld2 24701 zdis 24703 reperflem 24705 addcnlem 24751 divcnOLD 24755 divcn 24757 cncfmet 24800 cnheibor 24852 cnllycmp 24853 ipcn 25144 lmclim 25201 cncmet 25220 ovolfsval 25369 ellimc3 25778 lhop1lem 25916 ftc1lem6 25946 ulmdvlem1 26307 psercn 26334 pserdvlem2 26336 abelthlem2 26340 abelthlem3 26341 abelthlem5 26343 abelthlem7 26346 abelth 26349 dvlog2lem 26559 efopn 26565 logtayl 26567 logtayl2 26569 cxpcn3 26656 rlimcnp 26873 xrlimcnp 26876 efrlim 26877 efrlimOLD 26878 lgamucov 26946 lgamcvg2 26963 ftalem3 26983 smcnlem 30641 hhcnf 31849 tpr2rico 33885 qqhcn 33964 qqhucn 33965 ftc1cnnc 37682 cntotbnd 37786 iccbnd 37830 cnmetcoval 45190 iooabslt 45490 limcrecl 45620 islpcn 45630 stirlinglem5 46069 ovolval2lem 46634 ovolval3 46638 |
| Copyright terms: Public domain | W3C validator |