MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmetdval Structured version   Visualization version   GIF version

Theorem cnmetdval 24665
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypothesis
Ref Expression
cnmetdval.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnmetdval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))

Proof of Theorem cnmetdval
StepHypRef Expression
1 subf 11430 . . 3 − :(ℂ × ℂ)⟶ℂ
2 opelxpi 5678 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ⟨𝐴, 𝐵⟩ ∈ (ℂ × ℂ))
3 fvco3 6963 . . 3 (( − :(ℂ × ℂ)⟶ℂ ∧ ⟨𝐴, 𝐵⟩ ∈ (ℂ × ℂ)) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘( − ‘⟨𝐴, 𝐵⟩)))
41, 2, 3sylancr 587 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘( − ‘⟨𝐴, 𝐵⟩)))
5 df-ov 7393 . . 3 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
6 cnmetdval.1 . . . 4 𝐷 = (abs ∘ − )
76fveq1i 6862 . . 3 (𝐷‘⟨𝐴, 𝐵⟩) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
85, 7eqtri 2753 . 2 (𝐴𝐷𝐵) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
9 df-ov 7393 . . 3 (𝐴𝐵) = ( − ‘⟨𝐴, 𝐵⟩)
109fveq2i 6864 . 2 (abs‘(𝐴𝐵)) = (abs‘( − ‘⟨𝐴, 𝐵⟩))
114, 8, 103eqtr4g 2790 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4598   × cxp 5639  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cmin 11412  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414
This theorem is referenced by:  cnmet  24666  cnbl0  24668  cnblcld  24669  cnfldnm  24673  remetdval  24684  blcvx  24693  recld2  24710  zdis  24712  reperflem  24714  addcnlem  24760  divcnOLD  24764  divcn  24766  cncfmet  24809  cnheibor  24861  cnllycmp  24862  ipcn  25153  lmclim  25210  cncmet  25229  ovolfsval  25378  ellimc3  25787  lhop1lem  25925  ftc1lem6  25955  ulmdvlem1  26316  psercn  26343  pserdvlem2  26345  abelthlem2  26349  abelthlem3  26350  abelthlem5  26352  abelthlem7  26355  abelth  26358  dvlog2lem  26568  efopn  26574  logtayl  26576  logtayl2  26578  cxpcn3  26665  rlimcnp  26882  xrlimcnp  26885  efrlim  26886  efrlimOLD  26887  lgamucov  26955  lgamcvg2  26972  ftalem3  26992  smcnlem  30633  hhcnf  31841  tpr2rico  33909  qqhcn  33988  qqhucn  33989  ftc1cnnc  37693  cntotbnd  37797  iccbnd  37841  cnmetcoval  45203  iooabslt  45504  limcrecl  45634  islpcn  45644  stirlinglem5  46083  ovolval2lem  46648  ovolval3  46652
  Copyright terms: Public domain W3C validator