| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmetdval | Structured version Visualization version GIF version | ||
| Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnmetdval.1 | ⊢ 𝐷 = (abs ∘ − ) |
| Ref | Expression |
|---|---|
| cnmetdval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subf 11430 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 2 | opelxpi 5678 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) | |
| 3 | fvco3 6963 | . . 3 ⊢ (( − :(ℂ × ℂ)⟶ℂ ∧ 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) |
| 5 | df-ov 7393 | . . 3 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 6 | cnmetdval.1 | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
| 7 | 6 | fveq1i 6862 | . . 3 ⊢ (𝐷‘〈𝐴, 𝐵〉) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 8 | 5, 7 | eqtri 2753 | . 2 ⊢ (𝐴𝐷𝐵) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 9 | df-ov 7393 | . . 3 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
| 10 | 9 | fveq2i 6864 | . 2 ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘( − ‘〈𝐴, 𝐵〉)) |
| 11 | 4, 8, 10 | 3eqtr4g 2790 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 − cmin 11412 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: cnmet 24666 cnbl0 24668 cnblcld 24669 cnfldnm 24673 remetdval 24684 blcvx 24693 recld2 24710 zdis 24712 reperflem 24714 addcnlem 24760 divcnOLD 24764 divcn 24766 cncfmet 24809 cnheibor 24861 cnllycmp 24862 ipcn 25153 lmclim 25210 cncmet 25229 ovolfsval 25378 ellimc3 25787 lhop1lem 25925 ftc1lem6 25955 ulmdvlem1 26316 psercn 26343 pserdvlem2 26345 abelthlem2 26349 abelthlem3 26350 abelthlem5 26352 abelthlem7 26355 abelth 26358 dvlog2lem 26568 efopn 26574 logtayl 26576 logtayl2 26578 cxpcn3 26665 rlimcnp 26882 xrlimcnp 26885 efrlim 26886 efrlimOLD 26887 lgamucov 26955 lgamcvg2 26972 ftalem3 26992 smcnlem 30633 hhcnf 31841 tpr2rico 33909 qqhcn 33988 qqhucn 33989 ftc1cnnc 37693 cntotbnd 37797 iccbnd 37841 cnmetcoval 45203 iooabslt 45504 limcrecl 45634 islpcn 45644 stirlinglem5 46083 ovolval2lem 46648 ovolval3 46652 |
| Copyright terms: Public domain | W3C validator |