| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofcutrtime1d | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a timely cut of 𝐴 and 𝐵, then ( L ‘𝑋) is cofinal with 𝐴. (Contributed by Scott Fenton, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| cofcutrtimed.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) |
| cofcutrtimed.2 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cofcutrtimed.3 | ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) |
| Ref | Expression |
|---|---|
| cofcutrtime1d | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcutrtimed.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) | |
| 2 | cofcutrtimed.2 | . . 3 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 3 | cofcutrtimed.3 | . . 3 ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) | |
| 4 | cofcutrtime 27916 | . . 3 ⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋)) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1372 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∀wral 3050 ∃wrex 3059 ∪ cun 3931 ⊆ wss 3933 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 bday cbday 27641 ≤s csle 27744 <<s csslt 27780 |s cscut 27782 O cold 27837 L cleft 27839 R cright 27840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-1o 8489 df-2o 8490 df-no 27642 df-slt 27643 df-bday 27644 df-sle 27745 df-sslt 27781 df-scut 27783 df-made 27841 df-old 27842 df-left 27844 df-right 27845 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |