Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege83 Structured version   Visualization version   GIF version

Theorem frege83 42697
Description: Apply commuted form of frege81 42695 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege83.x 𝑋𝑆
frege83.y 𝑌𝑇
frege83.r 𝑅𝑈
frege83.b 𝐵𝑉
frege83.c 𝐶𝑊
Assertion
Ref Expression
frege83 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))

Proof of Theorem frege83
StepHypRef Expression
1 frege36 42590 . . 3 (𝑋𝐵 → (¬ 𝑋𝐵𝑋𝐶))
2 elun 4149 . . . 4 (𝑋 ∈ (𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶))
3 df-or 847 . . . 4 ((𝑋𝐵𝑋𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
42, 3bitri 275 . . 3 (𝑋 ∈ (𝐵𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
51, 4sylibr 233 . 2 (𝑋𝐵𝑋 ∈ (𝐵𝐶))
6 frege83.x . . 3 𝑋𝑆
7 frege83.y . . 3 𝑌𝑇
8 frege83.r . . 3 𝑅𝑈
9 frege83.b . . . . 5 𝐵𝑉
109elexi 3494 . . . 4 𝐵 ∈ V
11 frege83.c . . . . 5 𝐶𝑊
1211elexi 3494 . . . 4 𝐶 ∈ V
1310, 12unex 7733 . . 3 (𝐵𝐶) ∈ V
146, 7, 8, 13frege82 42696 . 2 ((𝑋𝐵𝑋 ∈ (𝐵𝐶)) → (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶)))))
155, 14ax-mp 5 1 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846  wcel 2107  Vcvv 3475  cun 3947   class class class wbr 5149  cfv 6544  t+ctcl 14932   hereditary whe 42523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-frege1 42541  ax-frege2 42542  ax-frege8 42560  ax-frege28 42581  ax-frege31 42585  ax-frege52a 42608  ax-frege58b 42652
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-seq 13967  df-trcl 14934  df-relexp 14967  df-he 42524
This theorem is referenced by:  frege133  42747
  Copyright terms: Public domain W3C validator