Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege83 Structured version   Visualization version   GIF version

Theorem frege83 41536
Description: Apply commuted form of frege81 41534 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege83.x 𝑋𝑆
frege83.y 𝑌𝑇
frege83.r 𝑅𝑈
frege83.b 𝐵𝑉
frege83.c 𝐶𝑊
Assertion
Ref Expression
frege83 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))

Proof of Theorem frege83
StepHypRef Expression
1 frege36 41429 . . 3 (𝑋𝐵 → (¬ 𝑋𝐵𝑋𝐶))
2 elun 4088 . . . 4 (𝑋 ∈ (𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶))
3 df-or 845 . . . 4 ((𝑋𝐵𝑋𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
42, 3bitri 274 . . 3 (𝑋 ∈ (𝐵𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
51, 4sylibr 233 . 2 (𝑋𝐵𝑋 ∈ (𝐵𝐶))
6 frege83.x . . 3 𝑋𝑆
7 frege83.y . . 3 𝑌𝑇
8 frege83.r . . 3 𝑅𝑈
9 frege83.b . . . . 5 𝐵𝑉
109elexi 3450 . . . 4 𝐵 ∈ V
11 frege83.c . . . . 5 𝐶𝑊
1211elexi 3450 . . . 4 𝐶 ∈ V
1310, 12unex 7591 . . 3 (𝐵𝐶) ∈ V
146, 7, 8, 13frege82 41535 . 2 ((𝑋𝐵𝑋 ∈ (𝐵𝐶)) → (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶)))))
155, 14ax-mp 5 1 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844  wcel 2110  Vcvv 3431  cun 3890   class class class wbr 5079  cfv 6432  t+ctcl 14707   hereditary whe 41362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-frege1 41380  ax-frege2 41381  ax-frege8 41399  ax-frege28 41420  ax-frege31 41424  ax-frege52a 41447  ax-frege58b 41491
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-n0 12245  df-z 12331  df-uz 12594  df-seq 13733  df-trcl 14709  df-relexp 14742  df-he 41363
This theorem is referenced by:  frege133  41586
  Copyright terms: Public domain W3C validator