Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege83 Structured version   Visualization version   GIF version

Theorem frege83 39081
Description: Apply commuted form of frege81 39079 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege83.x 𝑋𝑆
frege83.y 𝑌𝑇
frege83.r 𝑅𝑈
frege83.b 𝐵𝑉
frege83.c 𝐶𝑊
Assertion
Ref Expression
frege83 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))

Proof of Theorem frege83
StepHypRef Expression
1 frege36 38974 . . 3 (𝑋𝐵 → (¬ 𝑋𝐵𝑋𝐶))
2 elun 3981 . . . 4 (𝑋 ∈ (𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶))
3 df-or 881 . . . 4 ((𝑋𝐵𝑋𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
42, 3bitri 267 . . 3 (𝑋 ∈ (𝐵𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
51, 4sylibr 226 . 2 (𝑋𝐵𝑋 ∈ (𝐵𝐶))
6 frege83.x . . 3 𝑋𝑆
7 frege83.y . . 3 𝑌𝑇
8 frege83.r . . 3 𝑅𝑈
9 frege83.b . . . . 5 𝐵𝑉
109elexi 3431 . . . 4 𝐵 ∈ V
11 frege83.c . . . . 5 𝐶𝑊
1211elexi 3431 . . . 4 𝐶 ∈ V
1310, 12unex 7217 . . 3 (𝐵𝐶) ∈ V
146, 7, 8, 13frege82 39080 . 2 ((𝑋𝐵𝑋 ∈ (𝐵𝐶)) → (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶)))))
155, 14ax-mp 5 1 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 880  wcel 2166  Vcvv 3415  cun 3797   class class class wbr 4874  cfv 6124  t+ctcl 14104   hereditary whe 38907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-frege1 38925  ax-frege2 38926  ax-frege8 38944  ax-frege28 38965  ax-frege31 38969  ax-frege52a 38992  ax-frege58b 39036
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-n0 11620  df-z 11706  df-uz 11970  df-seq 13097  df-trcl 14106  df-relexp 14139  df-he 38908
This theorem is referenced by:  frege133  39131
  Copyright terms: Public domain W3C validator