Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege83 | Structured version Visualization version GIF version |
Description: Apply commuted form of frege81 41441 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege83.x | ⊢ 𝑋 ∈ 𝑆 |
frege83.y | ⊢ 𝑌 ∈ 𝑇 |
frege83.r | ⊢ 𝑅 ∈ 𝑈 |
frege83.b | ⊢ 𝐵 ∈ 𝑉 |
frege83.c | ⊢ 𝐶 ∈ 𝑊 |
Ref | Expression |
---|---|
frege83 | ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege36 41336 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
2 | elun 4079 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
3 | df-or 844 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
4 | 2, 3 | bitri 274 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) |
5 | 1, 4 | sylibr 233 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) |
6 | frege83.x | . . 3 ⊢ 𝑋 ∈ 𝑆 | |
7 | frege83.y | . . 3 ⊢ 𝑌 ∈ 𝑇 | |
8 | frege83.r | . . 3 ⊢ 𝑅 ∈ 𝑈 | |
9 | frege83.b | . . . . 5 ⊢ 𝐵 ∈ 𝑉 | |
10 | 9 | elexi 3441 | . . . 4 ⊢ 𝐵 ∈ V |
11 | frege83.c | . . . . 5 ⊢ 𝐶 ∈ 𝑊 | |
12 | 11 | elexi 3441 | . . . 4 ⊢ 𝐶 ∈ V |
13 | 10, 12 | unex 7574 | . . 3 ⊢ (𝐵 ∪ 𝐶) ∈ V |
14 | 6, 7, 8, 13 | frege82 41442 | . 2 ⊢ ((𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) → (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶))))) |
15 | 5, 14 | ax-mp 5 | 1 ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 class class class wbr 5070 ‘cfv 6418 t+ctcl 14624 hereditary whe 41269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-frege1 41287 ax-frege2 41288 ax-frege8 41306 ax-frege28 41327 ax-frege31 41331 ax-frege52a 41354 ax-frege58b 41398 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-trcl 14626 df-relexp 14659 df-he 41270 |
This theorem is referenced by: frege133 41493 |
Copyright terms: Public domain | W3C validator |