Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege83 Structured version   Visualization version   GIF version

Theorem frege83 41554
Description: Apply commuted form of frege81 41552 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege83.x 𝑋𝑆
frege83.y 𝑌𝑇
frege83.r 𝑅𝑈
frege83.b 𝐵𝑉
frege83.c 𝐶𝑊
Assertion
Ref Expression
frege83 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))

Proof of Theorem frege83
StepHypRef Expression
1 frege36 41447 . . 3 (𝑋𝐵 → (¬ 𝑋𝐵𝑋𝐶))
2 elun 4083 . . . 4 (𝑋 ∈ (𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶))
3 df-or 845 . . . 4 ((𝑋𝐵𝑋𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
42, 3bitri 274 . . 3 (𝑋 ∈ (𝐵𝐶) ↔ (¬ 𝑋𝐵𝑋𝐶))
51, 4sylibr 233 . 2 (𝑋𝐵𝑋 ∈ (𝐵𝐶))
6 frege83.x . . 3 𝑋𝑆
7 frege83.y . . 3 𝑌𝑇
8 frege83.r . . 3 𝑅𝑈
9 frege83.b . . . . 5 𝐵𝑉
109elexi 3451 . . . 4 𝐵 ∈ V
11 frege83.c . . . . 5 𝐶𝑊
1211elexi 3451 . . . 4 𝐶 ∈ V
1310, 12unex 7596 . . 3 (𝐵𝐶) ∈ V
146, 7, 8, 13frege82 41553 . 2 ((𝑋𝐵𝑋 ∈ (𝐵𝐶)) → (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶)))))
155, 14ax-mp 5 1 (𝑅 hereditary (𝐵𝐶) → (𝑋𝐵 → (𝑋(t+‘𝑅)𝑌𝑌 ∈ (𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844  wcel 2106  Vcvv 3432  cun 3885   class class class wbr 5074  cfv 6433  t+ctcl 14696   hereditary whe 41380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-frege1 41398  ax-frege2 41399  ax-frege8 41417  ax-frege28 41438  ax-frege31 41442  ax-frege52a 41465  ax-frege58b 41509
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-trcl 14698  df-relexp 14731  df-he 41381
This theorem is referenced by:  frege133  41604
  Copyright terms: Public domain W3C validator