| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege83 | Structured version Visualization version GIF version | ||
| Description: Apply commuted form of frege81 43893 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege83.x | ⊢ 𝑋 ∈ 𝑆 |
| frege83.y | ⊢ 𝑌 ∈ 𝑇 |
| frege83.r | ⊢ 𝑅 ∈ 𝑈 |
| frege83.b | ⊢ 𝐵 ∈ 𝑉 |
| frege83.c | ⊢ 𝐶 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| frege83 | ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege36 43788 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 2 | elun 4126 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
| 3 | df-or 848 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) |
| 5 | 1, 4 | sylibr 234 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) |
| 6 | frege83.x | . . 3 ⊢ 𝑋 ∈ 𝑆 | |
| 7 | frege83.y | . . 3 ⊢ 𝑌 ∈ 𝑇 | |
| 8 | frege83.r | . . 3 ⊢ 𝑅 ∈ 𝑈 | |
| 9 | frege83.b | . . . . 5 ⊢ 𝐵 ∈ 𝑉 | |
| 10 | 9 | elexi 3480 | . . . 4 ⊢ 𝐵 ∈ V |
| 11 | frege83.c | . . . . 5 ⊢ 𝐶 ∈ 𝑊 | |
| 12 | 11 | elexi 3480 | . . . 4 ⊢ 𝐶 ∈ V |
| 13 | 10, 12 | unex 7732 | . . 3 ⊢ (𝐵 ∪ 𝐶) ∈ V |
| 14 | 6, 7, 8, 13 | frege82 43894 | . 2 ⊢ ((𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) → (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶))))) |
| 15 | 5, 14 | ax-mp 5 | 1 ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 ∈ wcel 2107 Vcvv 3457 ∪ cun 3922 class class class wbr 5116 ‘cfv 6527 t+ctcl 14991 hereditary whe 43721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-frege1 43739 ax-frege2 43740 ax-frege8 43758 ax-frege28 43779 ax-frege31 43783 ax-frege52a 43806 ax-frege58b 43850 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-n0 12494 df-z 12581 df-uz 12845 df-seq 14009 df-trcl 14993 df-relexp 15026 df-he 43722 |
| This theorem is referenced by: frege133 43945 |
| Copyright terms: Public domain | W3C validator |