| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege83 | Structured version Visualization version GIF version | ||
| Description: Apply commuted form of frege81 43902 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege83.x | ⊢ 𝑋 ∈ 𝑆 |
| frege83.y | ⊢ 𝑌 ∈ 𝑇 |
| frege83.r | ⊢ 𝑅 ∈ 𝑈 |
| frege83.b | ⊢ 𝐵 ∈ 𝑉 |
| frege83.c | ⊢ 𝐶 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| frege83 | ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege36 43797 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 2 | elun 4135 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
| 3 | df-or 848 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) |
| 5 | 1, 4 | sylibr 234 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) |
| 6 | frege83.x | . . 3 ⊢ 𝑋 ∈ 𝑆 | |
| 7 | frege83.y | . . 3 ⊢ 𝑌 ∈ 𝑇 | |
| 8 | frege83.r | . . 3 ⊢ 𝑅 ∈ 𝑈 | |
| 9 | frege83.b | . . . . 5 ⊢ 𝐵 ∈ 𝑉 | |
| 10 | 9 | elexi 3487 | . . . 4 ⊢ 𝐵 ∈ V |
| 11 | frege83.c | . . . . 5 ⊢ 𝐶 ∈ 𝑊 | |
| 12 | 11 | elexi 3487 | . . . 4 ⊢ 𝐶 ∈ V |
| 13 | 10, 12 | unex 7747 | . . 3 ⊢ (𝐵 ∪ 𝐶) ∈ V |
| 14 | 6, 7, 8, 13 | frege82 43903 | . 2 ⊢ ((𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) → (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶))))) |
| 15 | 5, 14 | ax-mp 5 | 1 ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 ∈ wcel 2107 Vcvv 3464 ∪ cun 3931 class class class wbr 5125 ‘cfv 6542 t+ctcl 15007 hereditary whe 43730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-frege1 43748 ax-frege2 43749 ax-frege8 43767 ax-frege28 43788 ax-frege31 43792 ax-frege52a 43815 ax-frege58b 43859 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-seq 14026 df-trcl 15009 df-relexp 15042 df-he 43731 |
| This theorem is referenced by: frege133 43954 |
| Copyright terms: Public domain | W3C validator |