| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege83 | Structured version Visualization version GIF version | ||
| Description: Apply commuted form of frege81 43926 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege83.x | ⊢ 𝑋 ∈ 𝑆 |
| frege83.y | ⊢ 𝑌 ∈ 𝑇 |
| frege83.r | ⊢ 𝑅 ∈ 𝑈 |
| frege83.b | ⊢ 𝐵 ∈ 𝑉 |
| frege83.c | ⊢ 𝐶 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| frege83 | ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege36 43821 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 2 | elun 4112 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
| 3 | df-or 848 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) |
| 5 | 1, 4 | sylibr 234 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) |
| 6 | frege83.x | . . 3 ⊢ 𝑋 ∈ 𝑆 | |
| 7 | frege83.y | . . 3 ⊢ 𝑌 ∈ 𝑇 | |
| 8 | frege83.r | . . 3 ⊢ 𝑅 ∈ 𝑈 | |
| 9 | frege83.b | . . . . 5 ⊢ 𝐵 ∈ 𝑉 | |
| 10 | 9 | elexi 3467 | . . . 4 ⊢ 𝐵 ∈ V |
| 11 | frege83.c | . . . . 5 ⊢ 𝐶 ∈ 𝑊 | |
| 12 | 11 | elexi 3467 | . . . 4 ⊢ 𝐶 ∈ V |
| 13 | 10, 12 | unex 7700 | . . 3 ⊢ (𝐵 ∪ 𝐶) ∈ V |
| 14 | 6, 7, 8, 13 | frege82 43927 | . 2 ⊢ ((𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) → (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶))))) |
| 15 | 5, 14 | ax-mp 5 | 1 ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 class class class wbr 5102 ‘cfv 6499 t+ctcl 14927 hereditary whe 43754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-frege1 43772 ax-frege2 43773 ax-frege8 43791 ax-frege28 43812 ax-frege31 43816 ax-frege52a 43839 ax-frege58b 43883 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-trcl 14929 df-relexp 14962 df-he 43755 |
| This theorem is referenced by: frege133 43978 |
| Copyright terms: Public domain | W3C validator |