| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege83 | Structured version Visualization version GIF version | ||
| Description: Apply commuted form of frege81 43943 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege83.x | ⊢ 𝑋 ∈ 𝑆 |
| frege83.y | ⊢ 𝑌 ∈ 𝑇 |
| frege83.r | ⊢ 𝑅 ∈ 𝑈 |
| frege83.b | ⊢ 𝐵 ∈ 𝑉 |
| frege83.c | ⊢ 𝐶 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| frege83 | ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege36 43838 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 2 | elun 4133 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
| 3 | df-or 848 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶)) |
| 5 | 1, 4 | sylibr 234 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) |
| 6 | frege83.x | . . 3 ⊢ 𝑋 ∈ 𝑆 | |
| 7 | frege83.y | . . 3 ⊢ 𝑌 ∈ 𝑇 | |
| 8 | frege83.r | . . 3 ⊢ 𝑅 ∈ 𝑈 | |
| 9 | frege83.b | . . . . 5 ⊢ 𝐵 ∈ 𝑉 | |
| 10 | 9 | elexi 3487 | . . . 4 ⊢ 𝐵 ∈ V |
| 11 | frege83.c | . . . . 5 ⊢ 𝐶 ∈ 𝑊 | |
| 12 | 11 | elexi 3487 | . . . 4 ⊢ 𝐶 ∈ V |
| 13 | 10, 12 | unex 7743 | . . 3 ⊢ (𝐵 ∪ 𝐶) ∈ V |
| 14 | 6, 7, 8, 13 | frege82 43944 | . 2 ⊢ ((𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐵 ∪ 𝐶)) → (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶))))) |
| 15 | 5, 14 | ax-mp 5 | 1 ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 class class class wbr 5124 ‘cfv 6536 t+ctcl 15009 hereditary whe 43771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-frege1 43789 ax-frege2 43790 ax-frege8 43808 ax-frege28 43829 ax-frege31 43833 ax-frege52a 43856 ax-frege58b 43900 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-trcl 15011 df-relexp 15044 df-he 43772 |
| This theorem is referenced by: frege133 43995 |
| Copyright terms: Public domain | W3C validator |