| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2i1fseq2 | Structured version Visualization version GIF version | ||
| Description: In an extension to the results of itg2i1fseq 25708, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then ∫2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2i1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| itg2i1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| itg2i1fseq.3 | ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) |
| itg2i1fseq.4 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
| itg2i1fseq.5 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
| itg2i1fseq.6 | ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) |
| itg2i1fseq2.7 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| itg2i1fseq2.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) |
| Ref | Expression |
|---|---|
| itg2i1fseq2 | ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12895 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12623 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | itg2i1fseq.3 | . . . . . 6 ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) | |
| 4 | 3 | ffvelcdmda 7074 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ dom ∫1) |
| 5 | itg1cl 25638 | . . . . 5 ⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (∫1‘(𝑃‘𝑚)) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∫1‘(𝑃‘𝑚)) ∈ ℝ) |
| 7 | itg2i1fseq.6 | . . . 4 ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) | |
| 8 | 6, 7 | fmptd 7104 | . . 3 ⊢ (𝜑 → 𝑆:ℕ⟶ℝ) |
| 9 | 3 | ffvelcdmda 7074 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∈ dom ∫1) |
| 10 | peano2nn 12252 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ) | |
| 11 | ffvelcdm 7071 | . . . . . 6 ⊢ ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) | |
| 12 | 3, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) |
| 13 | itg2i1fseq.4 | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) | |
| 14 | simpr 484 | . . . . . . . 8 ⊢ ((0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) | |
| 15 | 14 | ralimi 3073 | . . . . . . 7 ⊢ (∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
| 16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
| 17 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘𝑛) = (𝑃‘𝑘)) | |
| 18 | fvoveq1 7428 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1))) | |
| 19 | 17, 18 | breq12d 5132 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → ((𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))) |
| 20 | 19 | rspccva 3600 | . . . . . 6 ⊢ ((∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
| 21 | 16, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
| 22 | itg1le 25666 | . . . . 5 ⊢ (((𝑃‘𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) | |
| 23 | 9, 12, 21, 22 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) |
| 24 | 2fveq3 6881 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑘))) | |
| 25 | fvex 6889 | . . . . . 6 ⊢ (∫1‘(𝑃‘𝑘)) ∈ V | |
| 26 | 24, 7, 25 | fvmpt 6986 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
| 27 | 26 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
| 28 | 2fveq3 6881 | . . . . . . 7 ⊢ (𝑚 = (𝑘 + 1) → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘(𝑘 + 1)))) | |
| 29 | fvex 6889 | . . . . . . 7 ⊢ (∫1‘(𝑃‘(𝑘 + 1))) ∈ V | |
| 30 | 28, 7, 29 | fvmpt 6986 | . . . . . 6 ⊢ ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
| 31 | 10, 30 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
| 32 | 31 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
| 33 | 23, 27, 32 | 3brtr4d 5151 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ (𝑆‘(𝑘 + 1))) |
| 34 | itg2i1fseq2.7 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 35 | itg2i1fseq2.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) | |
| 36 | 27, 35 | eqbrtrd 5141 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ 𝑀) |
| 37 | 36 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) |
| 38 | brralrspcev 5179 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) | |
| 39 | 34, 37, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) |
| 40 | 1, 2, 8, 33, 39 | climsup 15686 | . 2 ⊢ (𝜑 → 𝑆 ⇝ sup(ran 𝑆, ℝ, < )) |
| 41 | itg2i1fseq.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
| 42 | itg2i1fseq.2 | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
| 43 | itg2i1fseq.5 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | |
| 44 | 41, 42, 3, 13, 43, 7 | itg2i1fseq 25708 | . . 3 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ*, < )) |
| 45 | 8 | frnd 6714 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
| 46 | 7, 6 | dmmptd 6683 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = ℕ) |
| 47 | 1nn 12251 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 48 | ne0i 4316 | . . . . . . 7 ⊢ (1 ∈ ℕ → ℕ ≠ ∅) | |
| 49 | 47, 48 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → ℕ ≠ ∅) |
| 50 | 46, 49 | eqnetrd 2999 | . . . . 5 ⊢ (𝜑 → dom 𝑆 ≠ ∅) |
| 51 | dm0rn0 5904 | . . . . . 6 ⊢ (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅) | |
| 52 | 51 | necon3bii 2984 | . . . . 5 ⊢ (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅) |
| 53 | 50, 52 | sylib 218 | . . . 4 ⊢ (𝜑 → ran 𝑆 ≠ ∅) |
| 54 | ffn 6706 | . . . . . . 7 ⊢ (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ) | |
| 55 | breq1 5122 | . . . . . . . 8 ⊢ (𝑦 = (𝑆‘𝑘) → (𝑦 ≤ 𝑧 ↔ (𝑆‘𝑘) ≤ 𝑧)) | |
| 56 | 55 | ralrn 7078 | . . . . . . 7 ⊢ (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
| 57 | 8, 54, 56 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
| 58 | 57 | rexbidv 3164 | . . . . 5 ⊢ (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
| 59 | 39, 58 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) |
| 60 | supxrre 13343 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) | |
| 61 | 45, 53, 59, 60 | syl3anc 1373 | . . 3 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) |
| 62 | 44, 61 | eqtrd 2770 | . 2 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ, < )) |
| 63 | 40, 62 | breqtrrd 5147 | 1 ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘r cofr 7670 supcsup 9452 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 ℕcn 12240 [,)cico 13364 ⇝ cli 15500 MblFncmbf 25567 ∫1citg1 25568 ∫2citg2 25569 0𝑝c0p 25622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cmp 23325 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 df-itg2 25574 df-0p 25623 |
| This theorem is referenced by: itg2i1fseq3 25710 itg2addlem 25711 |
| Copyright terms: Public domain | W3C validator |