MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq2 Structured version   Visualization version   GIF version

Theorem itg2i1fseq2 25791
Description: In an extension to the results of itg2i1fseq 25790, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then 2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq2.7 (𝜑𝑀 ∈ ℝ)
itg2i1fseq2.8 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
Assertion
Ref Expression
itg2i1fseq2 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑘,𝑚,𝑛,𝑥,𝐹   𝑘,𝑀,𝑛   𝑃,𝑘,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚)

Proof of Theorem itg2i1fseq2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12921 . . 3 ℕ = (ℤ‘1)
2 1zzd 12648 . . 3 (𝜑 → 1 ∈ ℤ)
3 itg2i1fseq.3 . . . . . 6 (𝜑𝑃:ℕ⟶dom ∫1)
43ffvelcdmda 7104 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
5 itg1cl 25720 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (∫1‘(𝑃𝑚)) ∈ ℝ)
64, 5syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (∫1‘(𝑃𝑚)) ∈ ℝ)
7 itg2i1fseq.6 . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
86, 7fmptd 7134 . . 3 (𝜑𝑆:ℕ⟶ℝ)
93ffvelcdmda 7104 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
10 peano2nn 12278 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
11 ffvelcdm 7101 . . . . . 6 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
123, 10, 11syl2an 596 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
13 itg2i1fseq.4 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
14 simpr 484 . . . . . . . 8 ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
1514ralimi 3083 . . . . . . 7 (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
1613, 15syl 17 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
17 fveq2 6906 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
18 fvoveq1 7454 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
1917, 18breq12d 5156 . . . . . . 7 (𝑛 = 𝑘 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))))
2019rspccva 3621 . . . . . 6 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
2116, 20sylan 580 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
22 itg1le 25748 . . . . 5 (((𝑃𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
239, 12, 21, 22syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
24 2fveq3 6911 . . . . . 6 (𝑚 = 𝑘 → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃𝑘)))
25 fvex 6919 . . . . . 6 (∫1‘(𝑃𝑘)) ∈ V
2624, 7, 25fvmpt 7016 . . . . 5 (𝑘 ∈ ℕ → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
2726adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
28 2fveq3 6911 . . . . . . 7 (𝑚 = (𝑘 + 1) → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃‘(𝑘 + 1))))
29 fvex 6919 . . . . . . 7 (∫1‘(𝑃‘(𝑘 + 1))) ∈ V
3028, 7, 29fvmpt 7016 . . . . . 6 ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3110, 30syl 17 . . . . 5 (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3231adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3323, 27, 323brtr4d 5175 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ (𝑆‘(𝑘 + 1)))
34 itg2i1fseq2.7 . . . 4 (𝜑𝑀 ∈ ℝ)
35 itg2i1fseq2.8 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
3627, 35eqbrtrd 5165 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ 𝑀)
3736ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀)
38 brralrspcev 5203 . . . 4 ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
3934, 37, 38syl2anc 584 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
401, 2, 8, 33, 39climsup 15706 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
41 itg2i1fseq.1 . . . 4 (𝜑𝐹 ∈ MblFn)
42 itg2i1fseq.2 . . . 4 (𝜑𝐹:ℝ⟶(0[,)+∞))
43 itg2i1fseq.5 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
4441, 42, 3, 13, 43, 7itg2i1fseq 25790 . . 3 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
458frnd 6744 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ)
467, 6dmmptd 6713 . . . . . 6 (𝜑 → dom 𝑆 = ℕ)
47 1nn 12277 . . . . . . 7 1 ∈ ℕ
48 ne0i 4341 . . . . . . 7 (1 ∈ ℕ → ℕ ≠ ∅)
4947, 48mp1i 13 . . . . . 6 (𝜑 → ℕ ≠ ∅)
5046, 49eqnetrd 3008 . . . . 5 (𝜑 → dom 𝑆 ≠ ∅)
51 dm0rn0 5935 . . . . . 6 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
5251necon3bii 2993 . . . . 5 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
5350, 52sylib 218 . . . 4 (𝜑 → ran 𝑆 ≠ ∅)
54 ffn 6736 . . . . . . 7 (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ)
55 breq1 5146 . . . . . . . 8 (𝑦 = (𝑆𝑘) → (𝑦𝑧 ↔ (𝑆𝑘) ≤ 𝑧))
5655ralrn 7108 . . . . . . 7 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
578, 54, 563syl 18 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5857rexbidv 3179 . . . . 5 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5939, 58mpbird 257 . . . 4 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧)
60 supxrre 13369 . . . 4 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6145, 53, 59, 60syl3anc 1373 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6244, 61eqtrd 2777 . 2 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ, < ))
6340, 62breqtrrd 5171 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  r cofr 7696  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cn 12266  [,)cico 13389  cli 15520  MblFncmbf 25649  1citg1 25650  2citg2 25651  0𝑝c0p 25704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-0p 25705
This theorem is referenced by:  itg2i1fseq3  25792  itg2addlem  25793
  Copyright terms: Public domain W3C validator