Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2i1fseq2 | Structured version Visualization version GIF version |
Description: In an extension to the results of itg2i1fseq 24916, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then ∫2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
Ref | Expression |
---|---|
itg2i1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
itg2i1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
itg2i1fseq.3 | ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) |
itg2i1fseq.4 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
itg2i1fseq.5 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
itg2i1fseq.6 | ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) |
itg2i1fseq2.7 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
itg2i1fseq2.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) |
Ref | Expression |
---|---|
itg2i1fseq2 | ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12618 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12349 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | itg2i1fseq.3 | . . . . . 6 ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) | |
4 | 3 | ffvelrnda 6956 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ dom ∫1) |
5 | itg1cl 24845 | . . . . 5 ⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (∫1‘(𝑃‘𝑚)) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∫1‘(𝑃‘𝑚)) ∈ ℝ) |
7 | itg2i1fseq.6 | . . . 4 ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) | |
8 | 6, 7 | fmptd 6983 | . . 3 ⊢ (𝜑 → 𝑆:ℕ⟶ℝ) |
9 | 3 | ffvelrnda 6956 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∈ dom ∫1) |
10 | peano2nn 11983 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ) | |
11 | ffvelrn 6954 | . . . . . 6 ⊢ ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) | |
12 | 3, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) |
13 | itg2i1fseq.4 | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) | |
14 | simpr 485 | . . . . . . . 8 ⊢ ((0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) | |
15 | 14 | ralimi 3089 | . . . . . . 7 ⊢ (∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
17 | fveq2 6769 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘𝑛) = (𝑃‘𝑘)) | |
18 | fvoveq1 7292 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1))) | |
19 | 17, 18 | breq12d 5092 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → ((𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))) |
20 | 19 | rspccva 3560 | . . . . . 6 ⊢ ((∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
21 | 16, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
22 | itg1le 24874 | . . . . 5 ⊢ (((𝑃‘𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) | |
23 | 9, 12, 21, 22 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) |
24 | 2fveq3 6774 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑘))) | |
25 | fvex 6782 | . . . . . 6 ⊢ (∫1‘(𝑃‘𝑘)) ∈ V | |
26 | 24, 7, 25 | fvmpt 6870 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
27 | 26 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
28 | 2fveq3 6774 | . . . . . . 7 ⊢ (𝑚 = (𝑘 + 1) → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘(𝑘 + 1)))) | |
29 | fvex 6782 | . . . . . . 7 ⊢ (∫1‘(𝑃‘(𝑘 + 1))) ∈ V | |
30 | 28, 7, 29 | fvmpt 6870 | . . . . . 6 ⊢ ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
31 | 10, 30 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
32 | 31 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
33 | 23, 27, 32 | 3brtr4d 5111 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ (𝑆‘(𝑘 + 1))) |
34 | itg2i1fseq2.7 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
35 | itg2i1fseq2.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) | |
36 | 27, 35 | eqbrtrd 5101 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ 𝑀) |
37 | 36 | ralrimiva 3110 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) |
38 | brralrspcev 5139 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) | |
39 | 34, 37, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) |
40 | 1, 2, 8, 33, 39 | climsup 15377 | . 2 ⊢ (𝜑 → 𝑆 ⇝ sup(ran 𝑆, ℝ, < )) |
41 | itg2i1fseq.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
42 | itg2i1fseq.2 | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
43 | itg2i1fseq.5 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | |
44 | 41, 42, 3, 13, 43, 7 | itg2i1fseq 24916 | . . 3 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ*, < )) |
45 | 8 | frnd 6605 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
46 | 7, 6 | dmmptd 6575 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = ℕ) |
47 | 1nn 11982 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
48 | ne0i 4274 | . . . . . . 7 ⊢ (1 ∈ ℕ → ℕ ≠ ∅) | |
49 | 47, 48 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → ℕ ≠ ∅) |
50 | 46, 49 | eqnetrd 3013 | . . . . 5 ⊢ (𝜑 → dom 𝑆 ≠ ∅) |
51 | dm0rn0 5832 | . . . . . 6 ⊢ (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅) | |
52 | 51 | necon3bii 2998 | . . . . 5 ⊢ (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅) |
53 | 50, 52 | sylib 217 | . . . 4 ⊢ (𝜑 → ran 𝑆 ≠ ∅) |
54 | ffn 6597 | . . . . . . 7 ⊢ (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ) | |
55 | breq1 5082 | . . . . . . . 8 ⊢ (𝑦 = (𝑆‘𝑘) → (𝑦 ≤ 𝑧 ↔ (𝑆‘𝑘) ≤ 𝑧)) | |
56 | 55 | ralrn 6959 | . . . . . . 7 ⊢ (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
57 | 8, 54, 56 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
58 | 57 | rexbidv 3228 | . . . . 5 ⊢ (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
59 | 39, 58 | mpbird 256 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) |
60 | supxrre 13058 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) | |
61 | 45, 53, 59, 60 | syl3anc 1370 | . . 3 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) |
62 | 44, 61 | eqtrd 2780 | . 2 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ, < )) |
63 | 40, 62 | breqtrrd 5107 | 1 ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ∃wrex 3067 ⊆ wss 3892 ∅c0 4262 class class class wbr 5079 ↦ cmpt 5162 dom cdm 5589 ran crn 5590 Fn wfn 6426 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 ∘r cofr 7524 supcsup 9175 ℝcr 10869 0cc0 10870 1c1 10871 + caddc 10873 +∞cpnf 11005 ℝ*cxr 11007 < clt 11008 ≤ cle 11009 ℕcn 11971 [,)cico 13078 ⇝ cli 15189 MblFncmbf 24774 ∫1citg1 24775 ∫2citg2 24776 0𝑝c0p 24829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9375 ax-cc 10190 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-pre-sup 10948 ax-addf 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-disj 5045 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-ofr 7526 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-2o 8287 df-oadd 8290 df-omul 8291 df-er 8479 df-map 8598 df-pm 8599 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-fi 9146 df-sup 9177 df-inf 9178 df-oi 9245 df-dju 9658 df-card 9696 df-acn 9699 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-n0 12232 df-z 12318 df-uz 12580 df-q 12686 df-rp 12728 df-xneg 12845 df-xadd 12846 df-xmul 12847 df-ioo 13080 df-ioc 13081 df-ico 13082 df-icc 13083 df-fz 13237 df-fzo 13380 df-fl 13508 df-seq 13718 df-exp 13779 df-hash 14041 df-cj 14806 df-re 14807 df-im 14808 df-sqrt 14942 df-abs 14943 df-clim 15193 df-rlim 15194 df-sum 15394 df-rest 17129 df-topgen 17150 df-psmet 20585 df-xmet 20586 df-met 20587 df-bl 20588 df-mopn 20589 df-top 22039 df-topon 22056 df-bases 22092 df-cmp 22534 df-ovol 24624 df-vol 24625 df-mbf 24779 df-itg1 24780 df-itg2 24781 df-0p 24830 |
This theorem is referenced by: itg2i1fseq3 24918 itg2addlem 24919 |
Copyright terms: Public domain | W3C validator |