MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq2 Structured version   Visualization version   GIF version

Theorem itg2i1fseq2 25664
Description: In an extension to the results of itg2i1fseq 25663, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then 2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq2.7 (𝜑𝑀 ∈ ℝ)
itg2i1fseq2.8 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
Assertion
Ref Expression
itg2i1fseq2 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑘,𝑚,𝑛,𝑥,𝐹   𝑘,𝑀,𝑛   𝑃,𝑘,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚)

Proof of Theorem itg2i1fseq2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12843 . . 3 ℕ = (ℤ‘1)
2 1zzd 12571 . . 3 (𝜑 → 1 ∈ ℤ)
3 itg2i1fseq.3 . . . . . 6 (𝜑𝑃:ℕ⟶dom ∫1)
43ffvelcdmda 7059 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
5 itg1cl 25593 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (∫1‘(𝑃𝑚)) ∈ ℝ)
64, 5syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (∫1‘(𝑃𝑚)) ∈ ℝ)
7 itg2i1fseq.6 . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
86, 7fmptd 7089 . . 3 (𝜑𝑆:ℕ⟶ℝ)
93ffvelcdmda 7059 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
10 peano2nn 12205 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
11 ffvelcdm 7056 . . . . . 6 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
123, 10, 11syl2an 596 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
13 itg2i1fseq.4 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
14 simpr 484 . . . . . . . 8 ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
1514ralimi 3067 . . . . . . 7 (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
1613, 15syl 17 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
17 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
18 fvoveq1 7413 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
1917, 18breq12d 5123 . . . . . . 7 (𝑛 = 𝑘 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))))
2019rspccva 3590 . . . . . 6 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
2116, 20sylan 580 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
22 itg1le 25621 . . . . 5 (((𝑃𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
239, 12, 21, 22syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
24 2fveq3 6866 . . . . . 6 (𝑚 = 𝑘 → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃𝑘)))
25 fvex 6874 . . . . . 6 (∫1‘(𝑃𝑘)) ∈ V
2624, 7, 25fvmpt 6971 . . . . 5 (𝑘 ∈ ℕ → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
2726adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
28 2fveq3 6866 . . . . . . 7 (𝑚 = (𝑘 + 1) → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃‘(𝑘 + 1))))
29 fvex 6874 . . . . . . 7 (∫1‘(𝑃‘(𝑘 + 1))) ∈ V
3028, 7, 29fvmpt 6971 . . . . . 6 ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3110, 30syl 17 . . . . 5 (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3231adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3323, 27, 323brtr4d 5142 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ (𝑆‘(𝑘 + 1)))
34 itg2i1fseq2.7 . . . 4 (𝜑𝑀 ∈ ℝ)
35 itg2i1fseq2.8 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
3627, 35eqbrtrd 5132 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ 𝑀)
3736ralrimiva 3126 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀)
38 brralrspcev 5170 . . . 4 ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
3934, 37, 38syl2anc 584 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
401, 2, 8, 33, 39climsup 15643 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
41 itg2i1fseq.1 . . . 4 (𝜑𝐹 ∈ MblFn)
42 itg2i1fseq.2 . . . 4 (𝜑𝐹:ℝ⟶(0[,)+∞))
43 itg2i1fseq.5 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
4441, 42, 3, 13, 43, 7itg2i1fseq 25663 . . 3 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
458frnd 6699 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ)
467, 6dmmptd 6666 . . . . . 6 (𝜑 → dom 𝑆 = ℕ)
47 1nn 12204 . . . . . . 7 1 ∈ ℕ
48 ne0i 4307 . . . . . . 7 (1 ∈ ℕ → ℕ ≠ ∅)
4947, 48mp1i 13 . . . . . 6 (𝜑 → ℕ ≠ ∅)
5046, 49eqnetrd 2993 . . . . 5 (𝜑 → dom 𝑆 ≠ ∅)
51 dm0rn0 5891 . . . . . 6 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
5251necon3bii 2978 . . . . 5 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
5350, 52sylib 218 . . . 4 (𝜑 → ran 𝑆 ≠ ∅)
54 ffn 6691 . . . . . . 7 (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ)
55 breq1 5113 . . . . . . . 8 (𝑦 = (𝑆𝑘) → (𝑦𝑧 ↔ (𝑆𝑘) ≤ 𝑧))
5655ralrn 7063 . . . . . . 7 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
578, 54, 563syl 18 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5857rexbidv 3158 . . . . 5 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5939, 58mpbird 257 . . . 4 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧)
60 supxrre 13294 . . . 4 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6145, 53, 59, 60syl3anc 1373 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6244, 61eqtrd 2765 . 2 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ, < ))
6340, 62breqtrrd 5138 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  r cofr 7655  supcsup 9398  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cn 12193  [,)cico 13315  cli 15457  MblFncmbf 25522  1citg1 25523  2citg2 25524  0𝑝c0p 25577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-0p 25578
This theorem is referenced by:  itg2i1fseq3  25665  itg2addlem  25666
  Copyright terms: Public domain W3C validator