| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2i1fseq2 | Structured version Visualization version GIF version | ||
| Description: In an extension to the results of itg2i1fseq 25681, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then ∫2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2i1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| itg2i1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| itg2i1fseq.3 | ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) |
| itg2i1fseq.4 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
| itg2i1fseq.5 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
| itg2i1fseq.6 | ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) |
| itg2i1fseq2.7 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| itg2i1fseq2.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) |
| Ref | Expression |
|---|---|
| itg2i1fseq2 | ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12772 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12500 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | itg2i1fseq.3 | . . . . . 6 ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) | |
| 4 | 3 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ dom ∫1) |
| 5 | itg1cl 25611 | . . . . 5 ⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (∫1‘(𝑃‘𝑚)) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∫1‘(𝑃‘𝑚)) ∈ ℝ) |
| 7 | itg2i1fseq.6 | . . . 4 ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) | |
| 8 | 6, 7 | fmptd 7047 | . . 3 ⊢ (𝜑 → 𝑆:ℕ⟶ℝ) |
| 9 | 3 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∈ dom ∫1) |
| 10 | peano2nn 12134 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ) | |
| 11 | ffvelcdm 7014 | . . . . . 6 ⊢ ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) | |
| 12 | 3, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) |
| 13 | itg2i1fseq.4 | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) | |
| 14 | simpr 484 | . . . . . . . 8 ⊢ ((0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) | |
| 15 | 14 | ralimi 3069 | . . . . . . 7 ⊢ (∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
| 16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
| 17 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘𝑛) = (𝑃‘𝑘)) | |
| 18 | fvoveq1 7369 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1))) | |
| 19 | 17, 18 | breq12d 5104 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → ((𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))) |
| 20 | 19 | rspccva 3576 | . . . . . 6 ⊢ ((∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
| 21 | 16, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
| 22 | itg1le 25639 | . . . . 5 ⊢ (((𝑃‘𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) | |
| 23 | 9, 12, 21, 22 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) |
| 24 | 2fveq3 6827 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑘))) | |
| 25 | fvex 6835 | . . . . . 6 ⊢ (∫1‘(𝑃‘𝑘)) ∈ V | |
| 26 | 24, 7, 25 | fvmpt 6929 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
| 27 | 26 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
| 28 | 2fveq3 6827 | . . . . . . 7 ⊢ (𝑚 = (𝑘 + 1) → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘(𝑘 + 1)))) | |
| 29 | fvex 6835 | . . . . . . 7 ⊢ (∫1‘(𝑃‘(𝑘 + 1))) ∈ V | |
| 30 | 28, 7, 29 | fvmpt 6929 | . . . . . 6 ⊢ ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
| 31 | 10, 30 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
| 32 | 31 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
| 33 | 23, 27, 32 | 3brtr4d 5123 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ (𝑆‘(𝑘 + 1))) |
| 34 | itg2i1fseq2.7 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 35 | itg2i1fseq2.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) | |
| 36 | 27, 35 | eqbrtrd 5113 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ 𝑀) |
| 37 | 36 | ralrimiva 3124 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) |
| 38 | brralrspcev 5151 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) | |
| 39 | 34, 37, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) |
| 40 | 1, 2, 8, 33, 39 | climsup 15574 | . 2 ⊢ (𝜑 → 𝑆 ⇝ sup(ran 𝑆, ℝ, < )) |
| 41 | itg2i1fseq.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
| 42 | itg2i1fseq.2 | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
| 43 | itg2i1fseq.5 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | |
| 44 | 41, 42, 3, 13, 43, 7 | itg2i1fseq 25681 | . . 3 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ*, < )) |
| 45 | 8 | frnd 6659 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
| 46 | 7, 6 | dmmptd 6626 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = ℕ) |
| 47 | 1nn 12133 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 48 | ne0i 4291 | . . . . . . 7 ⊢ (1 ∈ ℕ → ℕ ≠ ∅) | |
| 49 | 47, 48 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → ℕ ≠ ∅) |
| 50 | 46, 49 | eqnetrd 2995 | . . . . 5 ⊢ (𝜑 → dom 𝑆 ≠ ∅) |
| 51 | dm0rn0 5864 | . . . . . 6 ⊢ (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅) | |
| 52 | 51 | necon3bii 2980 | . . . . 5 ⊢ (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅) |
| 53 | 50, 52 | sylib 218 | . . . 4 ⊢ (𝜑 → ran 𝑆 ≠ ∅) |
| 54 | ffn 6651 | . . . . . . 7 ⊢ (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ) | |
| 55 | breq1 5094 | . . . . . . . 8 ⊢ (𝑦 = (𝑆‘𝑘) → (𝑦 ≤ 𝑧 ↔ (𝑆‘𝑘) ≤ 𝑧)) | |
| 56 | 55 | ralrn 7021 | . . . . . . 7 ⊢ (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
| 57 | 8, 54, 56 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
| 58 | 57 | rexbidv 3156 | . . . . 5 ⊢ (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
| 59 | 39, 58 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) |
| 60 | supxrre 13223 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) | |
| 61 | 45, 53, 59, 60 | syl3anc 1373 | . . 3 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) |
| 62 | 44, 61 | eqtrd 2766 | . 2 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ, < )) |
| 63 | 40, 62 | breqtrrd 5119 | 1 ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘r cofr 7609 supcsup 9324 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 +∞cpnf 11140 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 ℕcn 12122 [,)cico 13244 ⇝ cli 15388 MblFncmbf 25540 ∫1citg1 25541 ∫2citg2 25542 0𝑝c0p 25595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 df-sum 15591 df-rest 17323 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-bases 22859 df-cmp 23300 df-ovol 25390 df-vol 25391 df-mbf 25545 df-itg1 25546 df-itg2 25547 df-0p 25596 |
| This theorem is referenced by: itg2i1fseq3 25683 itg2addlem 25684 |
| Copyright terms: Public domain | W3C validator |