![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2i1fseq2 | Structured version Visualization version GIF version |
Description: In an extension to the results of itg2i1fseq 25120, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then ∫2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.) |
Ref | Expression |
---|---|
itg2i1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
itg2i1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
itg2i1fseq.3 | ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) |
itg2i1fseq.4 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
itg2i1fseq.5 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
itg2i1fseq.6 | ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) |
itg2i1fseq2.7 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
itg2i1fseq2.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) |
Ref | Expression |
---|---|
itg2i1fseq2 | ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12806 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12534 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | itg2i1fseq.3 | . . . . . 6 ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) | |
4 | 3 | ffvelcdmda 7035 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ dom ∫1) |
5 | itg1cl 25049 | . . . . 5 ⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (∫1‘(𝑃‘𝑚)) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∫1‘(𝑃‘𝑚)) ∈ ℝ) |
7 | itg2i1fseq.6 | . . . 4 ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃‘𝑚))) | |
8 | 6, 7 | fmptd 7062 | . . 3 ⊢ (𝜑 → 𝑆:ℕ⟶ℝ) |
9 | 3 | ffvelcdmda 7035 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∈ dom ∫1) |
10 | peano2nn 12165 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ) | |
11 | ffvelcdm 7032 | . . . . . 6 ⊢ ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) | |
12 | 3, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1) |
13 | itg2i1fseq.4 | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) | |
14 | simpr 485 | . . . . . . . 8 ⊢ ((0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) | |
15 | 14 | ralimi 3086 | . . . . . . 7 ⊢ (∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) |
17 | fveq2 6842 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘𝑛) = (𝑃‘𝑘)) | |
18 | fvoveq1 7380 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1))) | |
19 | 17, 18 | breq12d 5118 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → ((𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))) |
20 | 19 | rspccva 3580 | . . . . . 6 ⊢ ((∀𝑛 ∈ ℕ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
21 | 16, 20 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) |
22 | itg1le 25078 | . . . . 5 ⊢ (((𝑃‘𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃‘𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) | |
23 | 9, 12, 21, 22 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1)))) |
24 | 2fveq3 6847 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑘))) | |
25 | fvex 6855 | . . . . . 6 ⊢ (∫1‘(𝑃‘𝑘)) ∈ V | |
26 | 24, 7, 25 | fvmpt 6948 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
27 | 26 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = (∫1‘(𝑃‘𝑘))) |
28 | 2fveq3 6847 | . . . . . . 7 ⊢ (𝑚 = (𝑘 + 1) → (∫1‘(𝑃‘𝑚)) = (∫1‘(𝑃‘(𝑘 + 1)))) | |
29 | fvex 6855 | . . . . . . 7 ⊢ (∫1‘(𝑃‘(𝑘 + 1))) ∈ V | |
30 | 28, 7, 29 | fvmpt 6948 | . . . . . 6 ⊢ ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
31 | 10, 30 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
32 | 31 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1)))) |
33 | 23, 27, 32 | 3brtr4d 5137 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ (𝑆‘(𝑘 + 1))) |
34 | itg2i1fseq2.7 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
35 | itg2i1fseq2.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∫1‘(𝑃‘𝑘)) ≤ 𝑀) | |
36 | 27, 35 | eqbrtrd 5127 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ 𝑀) |
37 | 36 | ralrimiva 3143 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) |
38 | brralrspcev 5165 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) | |
39 | 34, 37, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧) |
40 | 1, 2, 8, 33, 39 | climsup 15554 | . 2 ⊢ (𝜑 → 𝑆 ⇝ sup(ran 𝑆, ℝ, < )) |
41 | itg2i1fseq.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
42 | itg2i1fseq.2 | . . . 4 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
43 | itg2i1fseq.5 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) | |
44 | 41, 42, 3, 13, 43, 7 | itg2i1fseq 25120 | . . 3 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ*, < )) |
45 | 8 | frnd 6676 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
46 | 7, 6 | dmmptd 6646 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = ℕ) |
47 | 1nn 12164 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
48 | ne0i 4294 | . . . . . . 7 ⊢ (1 ∈ ℕ → ℕ ≠ ∅) | |
49 | 47, 48 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → ℕ ≠ ∅) |
50 | 46, 49 | eqnetrd 3011 | . . . . 5 ⊢ (𝜑 → dom 𝑆 ≠ ∅) |
51 | dm0rn0 5880 | . . . . . 6 ⊢ (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅) | |
52 | 51 | necon3bii 2996 | . . . . 5 ⊢ (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅) |
53 | 50, 52 | sylib 217 | . . . 4 ⊢ (𝜑 → ran 𝑆 ≠ ∅) |
54 | ffn 6668 | . . . . . . 7 ⊢ (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ) | |
55 | breq1 5108 | . . . . . . . 8 ⊢ (𝑦 = (𝑆‘𝑘) → (𝑦 ≤ 𝑧 ↔ (𝑆‘𝑘) ≤ 𝑧)) | |
56 | 55 | ralrn 7038 | . . . . . . 7 ⊢ (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
57 | 8, 54, 56 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
58 | 57 | rexbidv 3175 | . . . . 5 ⊢ (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑧)) |
59 | 39, 58 | mpbird 256 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) |
60 | supxrre 13246 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) | |
61 | 45, 53, 59, 60 | syl3anc 1371 | . . 3 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < )) |
62 | 44, 61 | eqtrd 2776 | . 2 ⊢ (𝜑 → (∫2‘𝐹) = sup(ran 𝑆, ℝ, < )) |
63 | 40, 62 | breqtrrd 5133 | 1 ⊢ (𝜑 → 𝑆 ⇝ (∫2‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3073 ⊆ wss 3910 ∅c0 4282 class class class wbr 5105 ↦ cmpt 5188 dom cdm 5633 ran crn 5634 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∘r cofr 7616 supcsup 9376 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 +∞cpnf 11186 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 ℕcn 12153 [,)cico 13266 ⇝ cli 15366 MblFncmbf 24978 ∫1citg1 24979 ∫2citg2 24980 0𝑝c0p 25033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cc 10371 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-disj 5071 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-omul 8417 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-rlim 15371 df-sum 15571 df-rest 17304 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-top 22243 df-topon 22260 df-bases 22296 df-cmp 22738 df-ovol 24828 df-vol 24829 df-mbf 24983 df-itg1 24984 df-itg2 24985 df-0p 25034 |
This theorem is referenced by: itg2i1fseq3 25122 itg2addlem 25123 |
Copyright terms: Public domain | W3C validator |