MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq2 Structured version   Visualization version   GIF version

Theorem itg2i1fseq2 25806
Description: In an extension to the results of itg2i1fseq 25805, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then 2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq2.7 (𝜑𝑀 ∈ ℝ)
itg2i1fseq2.8 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
Assertion
Ref Expression
itg2i1fseq2 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑘,𝑚,𝑛,𝑥,𝐹   𝑘,𝑀,𝑛   𝑃,𝑘,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚)

Proof of Theorem itg2i1fseq2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12919 . . 3 ℕ = (ℤ‘1)
2 1zzd 12646 . . 3 (𝜑 → 1 ∈ ℤ)
3 itg2i1fseq.3 . . . . . 6 (𝜑𝑃:ℕ⟶dom ∫1)
43ffvelcdmda 7104 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
5 itg1cl 25734 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (∫1‘(𝑃𝑚)) ∈ ℝ)
64, 5syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (∫1‘(𝑃𝑚)) ∈ ℝ)
7 itg2i1fseq.6 . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
86, 7fmptd 7134 . . 3 (𝜑𝑆:ℕ⟶ℝ)
93ffvelcdmda 7104 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
10 peano2nn 12276 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
11 ffvelcdm 7101 . . . . . 6 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
123, 10, 11syl2an 596 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
13 itg2i1fseq.4 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
14 simpr 484 . . . . . . . 8 ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
1514ralimi 3081 . . . . . . 7 (∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
1613, 15syl 17 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))
17 fveq2 6907 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
18 fvoveq1 7454 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
1917, 18breq12d 5161 . . . . . . 7 (𝑛 = 𝑘 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))))
2019rspccva 3621 . . . . . 6 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
2116, 20sylan 580 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1)))
22 itg1le 25763 . . . . 5 (((𝑃𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃𝑘) ∘r ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
239, 12, 21, 22syl3anc 1370 . . . 4 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
24 2fveq3 6912 . . . . . 6 (𝑚 = 𝑘 → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃𝑘)))
25 fvex 6920 . . . . . 6 (∫1‘(𝑃𝑘)) ∈ V
2624, 7, 25fvmpt 7016 . . . . 5 (𝑘 ∈ ℕ → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
2726adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
28 2fveq3 6912 . . . . . . 7 (𝑚 = (𝑘 + 1) → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃‘(𝑘 + 1))))
29 fvex 6920 . . . . . . 7 (∫1‘(𝑃‘(𝑘 + 1))) ∈ V
3028, 7, 29fvmpt 7016 . . . . . 6 ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3110, 30syl 17 . . . . 5 (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3231adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3323, 27, 323brtr4d 5180 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ (𝑆‘(𝑘 + 1)))
34 itg2i1fseq2.7 . . . 4 (𝜑𝑀 ∈ ℝ)
35 itg2i1fseq2.8 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
3627, 35eqbrtrd 5170 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ 𝑀)
3736ralrimiva 3144 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀)
38 brralrspcev 5208 . . . 4 ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
3934, 37, 38syl2anc 584 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
401, 2, 8, 33, 39climsup 15703 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
41 itg2i1fseq.1 . . . 4 (𝜑𝐹 ∈ MblFn)
42 itg2i1fseq.2 . . . 4 (𝜑𝐹:ℝ⟶(0[,)+∞))
43 itg2i1fseq.5 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
4441, 42, 3, 13, 43, 7itg2i1fseq 25805 . . 3 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
458frnd 6745 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ)
467, 6dmmptd 6714 . . . . . 6 (𝜑 → dom 𝑆 = ℕ)
47 1nn 12275 . . . . . . 7 1 ∈ ℕ
48 ne0i 4347 . . . . . . 7 (1 ∈ ℕ → ℕ ≠ ∅)
4947, 48mp1i 13 . . . . . 6 (𝜑 → ℕ ≠ ∅)
5046, 49eqnetrd 3006 . . . . 5 (𝜑 → dom 𝑆 ≠ ∅)
51 dm0rn0 5938 . . . . . 6 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
5251necon3bii 2991 . . . . 5 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
5350, 52sylib 218 . . . 4 (𝜑 → ran 𝑆 ≠ ∅)
54 ffn 6737 . . . . . . 7 (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ)
55 breq1 5151 . . . . . . . 8 (𝑦 = (𝑆𝑘) → (𝑦𝑧 ↔ (𝑆𝑘) ≤ 𝑧))
5655ralrn 7108 . . . . . . 7 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
578, 54, 563syl 18 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5857rexbidv 3177 . . . . 5 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5939, 58mpbird 257 . . . 4 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧)
60 supxrre 13366 . . . 4 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6145, 53, 59, 60syl3anc 1370 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6244, 61eqtrd 2775 . 2 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ, < ))
6340, 62breqtrrd 5176 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  r cofr 7696  supcsup 9478  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cn 12264  [,)cico 13386  cli 15517  MblFncmbf 25663  1citg1 25664  2citg2 25665  0𝑝c0p 25718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-0p 25719
This theorem is referenced by:  itg2i1fseq3  25807  itg2addlem  25808
  Copyright terms: Public domain W3C validator