MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq2 Structured version   Visualization version   GIF version

Theorem itg2i1fseq2 23814
Description: In an extension to the results of itg2i1fseq 23813, if there is an upper bound on the integrals of the simple functions approaching 𝐹, then 2𝐹 is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq2.7 (𝜑𝑀 ∈ ℝ)
itg2i1fseq2.8 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
Assertion
Ref Expression
itg2i1fseq2 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑘,𝑚,𝑛,𝑥,𝐹   𝑘,𝑀,𝑛   𝑃,𝑘,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚)

Proof of Theorem itg2i1fseq2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11923 . . 3 ℕ = (ℤ‘1)
2 1zzd 11655 . . 3 (𝜑 → 1 ∈ ℤ)
3 itg2i1fseq.3 . . . . . 6 (𝜑𝑃:ℕ⟶dom ∫1)
43ffvelrnda 6549 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
5 itg1cl 23743 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (∫1‘(𝑃𝑚)) ∈ ℝ)
64, 5syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (∫1‘(𝑃𝑚)) ∈ ℝ)
7 itg2i1fseq.6 . . . 4 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
86, 7fmptd 6574 . . 3 (𝜑𝑆:ℕ⟶ℝ)
93ffvelrnda 6549 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
10 peano2nn 11288 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
11 ffvelrn 6547 . . . . . 6 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑘 + 1) ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
123, 10, 11syl2an 589 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃‘(𝑘 + 1)) ∈ dom ∫1)
13 itg2i1fseq.4 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
14 simpr 477 . . . . . . . 8 ((0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) → (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
1514ralimi 3099 . . . . . . 7 (∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
1613, 15syl 17 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))
17 fveq2 6375 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
18 fvoveq1 6865 . . . . . . . 8 (𝑛 = 𝑘 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑘 + 1)))
1917, 18breq12d 4822 . . . . . . 7 (𝑛 = 𝑘 → ((𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1))))
2019rspccva 3460 . . . . . 6 ((∀𝑛 ∈ ℕ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1)))
2116, 20sylan 575 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1)))
22 itg1le 23771 . . . . 5 (((𝑃𝑘) ∈ dom ∫1 ∧ (𝑃‘(𝑘 + 1)) ∈ dom ∫1 ∧ (𝑃𝑘) ∘𝑟 ≤ (𝑃‘(𝑘 + 1))) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
239, 12, 21, 22syl3anc 1490 . . . 4 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫1‘(𝑃‘(𝑘 + 1))))
24 2fveq3 6380 . . . . . 6 (𝑚 = 𝑘 → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃𝑘)))
25 fvex 6388 . . . . . 6 (∫1‘(𝑃𝑘)) ∈ V
2624, 7, 25fvmpt 6471 . . . . 5 (𝑘 ∈ ℕ → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
2726adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) = (∫1‘(𝑃𝑘)))
28 2fveq3 6380 . . . . . . 7 (𝑚 = (𝑘 + 1) → (∫1‘(𝑃𝑚)) = (∫1‘(𝑃‘(𝑘 + 1))))
29 fvex 6388 . . . . . . 7 (∫1‘(𝑃‘(𝑘 + 1))) ∈ V
3028, 7, 29fvmpt 6471 . . . . . 6 ((𝑘 + 1) ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3110, 30syl 17 . . . . 5 (𝑘 ∈ ℕ → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3231adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = (∫1‘(𝑃‘(𝑘 + 1))))
3323, 27, 323brtr4d 4841 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ (𝑆‘(𝑘 + 1)))
34 itg2i1fseq2.7 . . . 4 (𝜑𝑀 ∈ ℝ)
35 itg2i1fseq2.8 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ 𝑀)
3627, 35eqbrtrd 4831 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ 𝑀)
3736ralrimiva 3113 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀)
38 brralrspcev 4869 . . . 4 ((𝑀 ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑀) → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
3934, 37, 38syl2anc 579 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧)
401, 2, 8, 33, 39climsup 14687 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
41 itg2i1fseq.1 . . . 4 (𝜑𝐹 ∈ MblFn)
42 itg2i1fseq.2 . . . 4 (𝜑𝐹:ℝ⟶(0[,)+∞))
43 itg2i1fseq.5 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
4441, 42, 3, 13, 43, 7itg2i1fseq 23813 . . 3 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
458frnd 6230 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ)
467, 6dmmptd 6202 . . . . . 6 (𝜑 → dom 𝑆 = ℕ)
47 1nn 11287 . . . . . . 7 1 ∈ ℕ
48 ne0i 4085 . . . . . . 7 (1 ∈ ℕ → ℕ ≠ ∅)
4947, 48mp1i 13 . . . . . 6 (𝜑 → ℕ ≠ ∅)
5046, 49eqnetrd 3004 . . . . 5 (𝜑 → dom 𝑆 ≠ ∅)
51 dm0rn0 5510 . . . . . 6 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
5251necon3bii 2989 . . . . 5 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
5350, 52sylib 209 . . . 4 (𝜑 → ran 𝑆 ≠ ∅)
54 ffn 6223 . . . . . . 7 (𝑆:ℕ⟶ℝ → 𝑆 Fn ℕ)
55 breq1 4812 . . . . . . . 8 (𝑦 = (𝑆𝑘) → (𝑦𝑧 ↔ (𝑆𝑘) ≤ 𝑧))
5655ralrn 6552 . . . . . . 7 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
578, 54, 563syl 18 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5857rexbidv 3199 . . . . 5 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑧))
5939, 58mpbird 248 . . . 4 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧)
60 supxrre 12359 . . . 4 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ ran 𝑆 𝑦𝑧) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6145, 53, 59, 60syl3anc 1490 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
6244, 61eqtrd 2799 . 2 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ, < ))
6340, 62breqtrrd 4837 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732  c0 4079   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑟 cofr 7094  supcsup 8553  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  cn 11274  [,)cico 12379  cli 14502  MblFncmbf 23672  1citg1 23673  2citg2 23674  0𝑝c0p 23727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-rlim 14507  df-sum 14704  df-rest 16351  df-topgen 16372  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-0p 23728
This theorem is referenced by:  itg2i1fseq3  23815  itg2addlem  23816
  Copyright terms: Public domain W3C validator