Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmbfcex Structured version   Visualization version   GIF version

Theorem smfmbfcex 46769
Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 25577). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmbfcex.s 𝑆 = dom vol
smfmbfcex.x (𝜑𝑋 ⊆ ℝ)
smfmbfcex.n (𝜑 → ¬ 𝑋𝑆)
smfmbfcex.f 𝐹 = (𝑥𝑋 ↦ 0)
Assertion
Ref Expression
smfmbfcex (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfmbfcex
StepHypRef Expression
1 nfv 1914 . . 3 𝑥𝜑
2 smfmbfcex.s . . . . 5 𝑆 = dom vol
3 dmvolsal 46355 . . . . 5 dom vol ∈ SAlg
42, 3eqeltri 2831 . . . 4 𝑆 ∈ SAlg
54a1i 11 . . 3 (𝜑𝑆 ∈ SAlg)
6 smfmbfcex.x . . . 4 (𝜑𝑋 ⊆ ℝ)
72unieqi 4900 . . . . 5 𝑆 = dom vol
8 unidmvol 25499 . . . . 5 dom vol = ℝ
97, 8eqtri 2759 . . . 4 𝑆 = ℝ
106, 9sseqtrrdi 4005 . . 3 (𝜑𝑋 𝑆)
11 0red 11243 . . 3 (𝜑 → 0 ∈ ℝ)
12 smfmbfcex.f . . 3 𝐹 = (𝑥𝑋 ↦ 0)
131, 5, 10, 11, 12smfconst 46758 . 2 (𝜑𝐹 ∈ (SMblFn‘𝑆))
14 smfmbfcex.n . . . 4 (𝜑 → ¬ 𝑋𝑆)
15 0red 11243 . . . . . 6 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
1612, 15dmmptd 6688 . . . . 5 (𝜑 → dom 𝐹 = 𝑋)
172eqcomi 2745 . . . . . 6 dom vol = 𝑆
1817a1i 11 . . . . 5 (𝜑 → dom vol = 𝑆)
1916, 18eleq12d 2829 . . . 4 (𝜑 → (dom 𝐹 ∈ dom vol ↔ 𝑋𝑆))
2014, 19mtbird 325 . . 3 (𝜑 → ¬ dom 𝐹 ∈ dom vol)
21 mbfdm 25584 . . 3 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
2220, 21nsyl 140 . 2 (𝜑 → ¬ 𝐹 ∈ MblFn)
2313, 22jca 511 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3931   cuni 4888  cmpt 5206  dom cdm 5659  cfv 6536  cr 11133  0cc0 11134  volcvol 25421  MblFncmbf 25572  SAlgcsalg 46317  SMblFncsmblfn 46704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xadd 13134  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-rest 17441  df-xmet 21313  df-met 21314  df-ovol 25422  df-vol 25423  df-mbf 25577  df-salg 46318  df-smblfn 46705
This theorem is referenced by:  nsssmfmbflem  46787
  Copyright terms: Public domain W3C validator