Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmbfcex Structured version   Visualization version   GIF version

Theorem smfmbfcex 42578
Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 23903). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmbfcex.s 𝑆 = dom vol
smfmbfcex.x (𝜑𝑋 ⊆ ℝ)
smfmbfcex.n (𝜑 → ¬ 𝑋𝑆)
smfmbfcex.f 𝐹 = (𝑥𝑋 ↦ 0)
Assertion
Ref Expression
smfmbfcex (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn))
Distinct variable groups:   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfmbfcex
StepHypRef Expression
1 nfv 1892 . . 3 𝑥𝜑
2 smfmbfcex.s . . . . 5 𝑆 = dom vol
3 dmvolsal 42171 . . . . 5 dom vol ∈ SAlg
42, 3eqeltri 2879 . . . 4 𝑆 ∈ SAlg
54a1i 11 . . 3 (𝜑𝑆 ∈ SAlg)
6 smfmbfcex.x . . . 4 (𝜑𝑋 ⊆ ℝ)
72unieqi 4754 . . . . 5 𝑆 = dom vol
8 unidmvol 23825 . . . . 5 dom vol = ℝ
97, 8eqtri 2819 . . . 4 𝑆 = ℝ
106, 9syl6sseqr 3939 . . 3 (𝜑𝑋 𝑆)
11 0red 10490 . . 3 (𝜑 → 0 ∈ ℝ)
12 smfmbfcex.f . . 3 𝐹 = (𝑥𝑋 ↦ 0)
131, 5, 10, 11, 12smfconst 42568 . 2 (𝜑𝐹 ∈ (SMblFn‘𝑆))
14 smfmbfcex.n . . . 4 (𝜑 → ¬ 𝑋𝑆)
15 0red 10490 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
1615, 12fmptd 6741 . . . . . . 7 (𝜑𝐹:𝑋⟶ℝ)
1716fdmd 6391 . . . . . 6 (𝜑 → dom 𝐹 = 𝑋)
182eqcomi 2804 . . . . . . 7 dom vol = 𝑆
1918a1i 11 . . . . . 6 (𝜑 → dom vol = 𝑆)
2017, 19eleq12d 2877 . . . . 5 (𝜑 → (dom 𝐹 ∈ dom vol ↔ 𝑋𝑆))
2120notbid 319 . . . 4 (𝜑 → (¬ dom 𝐹 ∈ dom vol ↔ ¬ 𝑋𝑆))
2214, 21mpbird 258 . . 3 (𝜑 → ¬ dom 𝐹 ∈ dom vol)
23 mbfdm 23910 . . . 4 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
2423con3i 157 . . 3 (¬ dom 𝐹 ∈ dom vol → ¬ 𝐹 ∈ MblFn)
2522, 24syl 17 . 2 (𝜑 → ¬ 𝐹 ∈ MblFn)
2613, 25jca 512 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2081  wss 3859   cuni 4745  cmpt 5041  dom cdm 5443  cfv 6225  cr 10382  0cc0 10383  volcvol 23747  MblFncmbf 23898  SAlgcsalg 42135  SMblFncsmblfn 42519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cc 9703  ax-ac2 9731  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-acn 9217  df-ac 9388  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xadd 12358  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-rlim 14680  df-sum 14877  df-rest 16525  df-xmet 20220  df-met 20221  df-ovol 23748  df-vol 23749  df-mbf 23903  df-salg 42136  df-smblfn 42520
This theorem is referenced by:  nsssmfmbflem  42596
  Copyright terms: Public domain W3C validator