| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfmbfcex | Structured version Visualization version GIF version | ||
| Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 25655). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfmbfcex.s | ⊢ 𝑆 = dom vol |
| smfmbfcex.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| smfmbfcex.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
| smfmbfcex.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) |
| Ref | Expression |
|---|---|
| smfmbfcex | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | smfmbfcex.s | . . . . 5 ⊢ 𝑆 = dom vol | |
| 3 | dmvolsal 46366 | . . . . 5 ⊢ dom vol ∈ SAlg | |
| 4 | 2, 3 | eqeltri 2836 | . . . 4 ⊢ 𝑆 ∈ SAlg |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 6 | smfmbfcex.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
| 7 | 2 | unieqi 4918 | . . . . 5 ⊢ ∪ 𝑆 = ∪ dom vol |
| 8 | unidmvol 25577 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
| 9 | 7, 8 | eqtri 2764 | . . . 4 ⊢ ∪ 𝑆 = ℝ |
| 10 | 6, 9 | sseqtrrdi 4024 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝑆) |
| 11 | 0red 11265 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 12 | smfmbfcex.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) | |
| 13 | 1, 5, 10, 11, 12 | smfconst 46769 | . 2 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| 14 | smfmbfcex.n | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) | |
| 15 | 0red 11265 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
| 16 | 12, 15 | dmmptd 6712 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 17 | 2 | eqcomi 2745 | . . . . . 6 ⊢ dom vol = 𝑆 |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → dom vol = 𝑆) |
| 19 | 16, 18 | eleq12d 2834 | . . . 4 ⊢ (𝜑 → (dom 𝐹 ∈ dom vol ↔ 𝑋 ∈ 𝑆)) |
| 20 | 14, 19 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ dom 𝐹 ∈ dom vol) |
| 21 | mbfdm 25662 | . . 3 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 22 | 20, 21 | nsyl 140 | . 2 ⊢ (𝜑 → ¬ 𝐹 ∈ MblFn) |
| 23 | 13, 22 | jca 511 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ∪ cuni 4906 ↦ cmpt 5224 dom cdm 5684 ‘cfv 6560 ℝcr 11155 0cc0 11156 volcvol 25499 MblFncmbf 25650 SAlgcsalg 46328 SMblFncsmblfn 46715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cc 10476 ax-ac2 10504 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-acn 9983 df-ac 10157 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xadd 13156 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 df-rest 17468 df-xmet 21358 df-met 21359 df-ovol 25500 df-vol 25501 df-mbf 25655 df-salg 46329 df-smblfn 46716 |
| This theorem is referenced by: nsssmfmbflem 46798 |
| Copyright terms: Public domain | W3C validator |