| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfmbfcex | Structured version Visualization version GIF version | ||
| Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 25527). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfmbfcex.s | ⊢ 𝑆 = dom vol |
| smfmbfcex.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| smfmbfcex.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
| smfmbfcex.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) |
| Ref | Expression |
|---|---|
| smfmbfcex | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | smfmbfcex.s | . . . . 5 ⊢ 𝑆 = dom vol | |
| 3 | dmvolsal 46351 | . . . . 5 ⊢ dom vol ∈ SAlg | |
| 4 | 2, 3 | eqeltri 2825 | . . . 4 ⊢ 𝑆 ∈ SAlg |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 6 | smfmbfcex.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
| 7 | 2 | unieqi 4886 | . . . . 5 ⊢ ∪ 𝑆 = ∪ dom vol |
| 8 | unidmvol 25449 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
| 9 | 7, 8 | eqtri 2753 | . . . 4 ⊢ ∪ 𝑆 = ℝ |
| 10 | 6, 9 | sseqtrrdi 3991 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝑆) |
| 11 | 0red 11184 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 12 | smfmbfcex.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) | |
| 13 | 1, 5, 10, 11, 12 | smfconst 46754 | . 2 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| 14 | smfmbfcex.n | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) | |
| 15 | 0red 11184 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
| 16 | 12, 15 | dmmptd 6666 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 17 | 2 | eqcomi 2739 | . . . . . 6 ⊢ dom vol = 𝑆 |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → dom vol = 𝑆) |
| 19 | 16, 18 | eleq12d 2823 | . . . 4 ⊢ (𝜑 → (dom 𝐹 ∈ dom vol ↔ 𝑋 ∈ 𝑆)) |
| 20 | 14, 19 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ dom 𝐹 ∈ dom vol) |
| 21 | mbfdm 25534 | . . 3 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 22 | 20, 21 | nsyl 140 | . 2 ⊢ (𝜑 → ¬ 𝐹 ∈ MblFn) |
| 23 | 13, 22 | jca 511 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 ℝcr 11074 0cc0 11075 volcvol 25371 MblFncmbf 25522 SAlgcsalg 46313 SMblFncsmblfn 46700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-rest 17392 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 df-salg 46314 df-smblfn 46701 |
| This theorem is referenced by: nsssmfmbflem 46783 |
| Copyright terms: Public domain | W3C validator |