| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfmbfcex | Structured version Visualization version GIF version | ||
| Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf 25545). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfmbfcex.s | ⊢ 𝑆 = dom vol |
| smfmbfcex.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| smfmbfcex.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
| smfmbfcex.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) |
| Ref | Expression |
|---|---|
| smfmbfcex | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | smfmbfcex.s | . . . . 5 ⊢ 𝑆 = dom vol | |
| 3 | dmvolsal 46383 | . . . . 5 ⊢ dom vol ∈ SAlg | |
| 4 | 2, 3 | eqeltri 2827 | . . . 4 ⊢ 𝑆 ∈ SAlg |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 6 | smfmbfcex.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
| 7 | 2 | unieqi 4871 | . . . . 5 ⊢ ∪ 𝑆 = ∪ dom vol |
| 8 | unidmvol 25467 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
| 9 | 7, 8 | eqtri 2754 | . . . 4 ⊢ ∪ 𝑆 = ℝ |
| 10 | 6, 9 | sseqtrrdi 3976 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝑆) |
| 11 | 0red 11112 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 12 | smfmbfcex.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) | |
| 13 | 1, 5, 10, 11, 12 | smfconst 46786 | . 2 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| 14 | smfmbfcex.n | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) | |
| 15 | 0red 11112 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
| 16 | 12, 15 | dmmptd 6626 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 17 | 2 | eqcomi 2740 | . . . . . 6 ⊢ dom vol = 𝑆 |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → dom vol = 𝑆) |
| 19 | 16, 18 | eleq12d 2825 | . . . 4 ⊢ (𝜑 → (dom 𝐹 ∈ dom vol ↔ 𝑋 ∈ 𝑆)) |
| 20 | 14, 19 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ dom 𝐹 ∈ dom vol) |
| 21 | mbfdm 25552 | . . 3 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 22 | 20, 21 | nsyl 140 | . 2 ⊢ (𝜑 → ¬ 𝐹 ∈ MblFn) |
| 23 | 13, 22 | jca 511 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 ↦ cmpt 5172 dom cdm 5616 ‘cfv 6481 ℝcr 11002 0cc0 11003 volcvol 25389 MblFncmbf 25540 SAlgcsalg 46345 SMblFncsmblfn 46732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xadd 13009 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 df-sum 15591 df-rest 17323 df-xmet 21282 df-met 21283 df-ovol 25390 df-vol 25391 df-mbf 25545 df-salg 46346 df-smblfn 46733 |
| This theorem is referenced by: nsssmfmbflem 46815 |
| Copyright terms: Public domain | W3C validator |