Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numinfctb Structured version   Visualization version   GIF version

Theorem numinfctb 40484
Description: A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
numinfctb ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)

Proof of Theorem numinfctb
StepHypRef Expression
1 omelon 9175 . . . . 5 ω ∈ On
2 onenon 9444 . . . . 5 (ω ∈ On → ω ∈ dom card)
31, 2ax-mp 5 . . . 4 ω ∈ dom card
4 domtri2 9484 . . . 4 ((ω ∈ dom card ∧ 𝑆 ∈ dom card) → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω))
53, 4mpan 690 . . 3 (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω))
6 isfinite 9181 . . . 4 (𝑆 ∈ Fin ↔ 𝑆 ≺ ω)
76notbii 323 . . 3 𝑆 ∈ Fin ↔ ¬ 𝑆 ≺ ω)
85, 7bitr4di 292 . 2 (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ∈ Fin))
98biimpar 481 1 ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2113   class class class wbr 5027  dom cdm 5519  Oncon0 6166  ωcom 7593  cdom 8546  csdm 8547  Fincfn 8548  cardccrd 9430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-card 9434
This theorem is referenced by:  isnumbasgrplem3  40486
  Copyright terms: Public domain W3C validator