Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > numinfctb | Structured version Visualization version GIF version |
Description: A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
Ref | Expression |
---|---|
numinfctb | ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9175 | . . . . 5 ⊢ ω ∈ On | |
2 | onenon 9444 | . . . . 5 ⊢ (ω ∈ On → ω ∈ dom card) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ω ∈ dom card |
4 | domtri2 9484 | . . . 4 ⊢ ((ω ∈ dom card ∧ 𝑆 ∈ dom card) → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω)) | |
5 | 3, 4 | mpan 690 | . . 3 ⊢ (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω)) |
6 | isfinite 9181 | . . . 4 ⊢ (𝑆 ∈ Fin ↔ 𝑆 ≺ ω) | |
7 | 6 | notbii 323 | . . 3 ⊢ (¬ 𝑆 ∈ Fin ↔ ¬ 𝑆 ≺ ω) |
8 | 5, 7 | bitr4di 292 | . 2 ⊢ (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ∈ Fin)) |
9 | 8 | biimpar 481 | 1 ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2113 class class class wbr 5027 dom cdm 5519 Oncon0 6166 ωcom 7593 ≼ cdom 8546 ≺ csdm 8547 Fincfn 8548 cardccrd 9430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-inf2 9170 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-card 9434 |
This theorem is referenced by: isnumbasgrplem3 40486 |
Copyright terms: Public domain | W3C validator |