Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numinfctb Structured version   Visualization version   GIF version

Theorem numinfctb 39836
Description: A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
numinfctb ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)

Proof of Theorem numinfctb
StepHypRef Expression
1 omelon 9083 . . . . 5 ω ∈ On
2 onenon 9352 . . . . 5 (ω ∈ On → ω ∈ dom card)
31, 2ax-mp 5 . . . 4 ω ∈ dom card
4 domtri2 9392 . . . 4 ((ω ∈ dom card ∧ 𝑆 ∈ dom card) → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω))
53, 4mpan 688 . . 3 (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω))
6 isfinite 9089 . . . 4 (𝑆 ∈ Fin ↔ 𝑆 ≺ ω)
76notbii 322 . . 3 𝑆 ∈ Fin ↔ ¬ 𝑆 ≺ ω)
85, 7syl6bbr 291 . 2 (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ∈ Fin))
98biimpar 480 1 ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2114   class class class wbr 5038  dom cdm 5527  Oncon0 6163  ωcom 7554  cdom 8481  csdm 8482  Fincfn 8483  cardccrd 9338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-inf2 9078
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-om 7555  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-card 9342
This theorem is referenced by:  isnumbasgrplem3  39838
  Copyright terms: Public domain W3C validator