MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harsdom Structured version   Visualization version   GIF version

Theorem harsdom 9754
Description: The Hartogs number of a well-orderable set strictly dominates the set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harsdom (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴))

Proof of Theorem harsdom
StepHypRef Expression
1 harndom 9299 . 2 ¬ (har‘𝐴) ≼ 𝐴
2 harcl 9296 . . . 4 (har‘𝐴) ∈ On
3 onenon 9708 . . . 4 ((har‘𝐴) ∈ On → (har‘𝐴) ∈ dom card)
42, 3ax-mp 5 . . 3 (har‘𝐴) ∈ dom card
5 domtri2 9748 . . . 4 (((har‘𝐴) ∈ dom card ∧ 𝐴 ∈ dom card) → ((har‘𝐴) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (har‘𝐴)))
65con2bid 355 . . 3 (((har‘𝐴) ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐴 ≺ (har‘𝐴) ↔ ¬ (har‘𝐴) ≼ 𝐴))
74, 6mpan 687 . 2 (𝐴 ∈ dom card → (𝐴 ≺ (har‘𝐴) ↔ ¬ (har‘𝐴) ≼ 𝐴))
81, 7mpbiri 257 1 (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2110   class class class wbr 5079  dom cdm 5590  Oncon0 6265  cfv 6432  cdom 8714  csdm 8715  harchar 9293  cardccrd 9694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-oi 9247  df-har 9294  df-card 9698
This theorem is referenced by:  onsdom  9755  harval2  9756  alephordilem1  9830  gchaleph2  10429
  Copyright terms: Public domain W3C validator