![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cats1fv | Structured version Visualization version GIF version |
Description: A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
cats1cld.1 | ⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) |
cats1cli.2 | ⊢ 𝑆 ∈ Word V |
cats1fvn.3 | ⊢ (♯‘𝑆) = 𝑀 |
cats1fv.4 | ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) |
cats1fv.5 | ⊢ 𝑁 ∈ ℕ0 |
cats1fv.6 | ⊢ 𝑁 < 𝑀 |
Ref | Expression |
---|---|
cats1fv | ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cats1cld.1 | . . . 4 ⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) | |
2 | 1 | fveq1i 6893 | . . 3 ⊢ (𝑇‘𝑁) = ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁) |
3 | cats1cli.2 | . . . 4 ⊢ 𝑆 ∈ Word V | |
4 | s1cli 14555 | . . . 4 ⊢ ⟨“𝑋”⟩ ∈ Word V | |
5 | cats1fv.5 | . . . . . 6 ⊢ 𝑁 ∈ ℕ0 | |
6 | nn0uz 12864 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | 5, 6 | eleqtri 2832 | . . . . 5 ⊢ 𝑁 ∈ (ℤ≥‘0) |
8 | lencl 14483 | . . . . . 6 ⊢ (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0) | |
9 | nn0z 12583 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℤ) | |
10 | 3, 8, 9 | mp2b 10 | . . . . 5 ⊢ (♯‘𝑆) ∈ ℤ |
11 | cats1fv.6 | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
12 | cats1fvn.3 | . . . . . 6 ⊢ (♯‘𝑆) = 𝑀 | |
13 | 11, 12 | breqtrri 5176 | . . . . 5 ⊢ 𝑁 < (♯‘𝑆) |
14 | elfzo2 13635 | . . . . 5 ⊢ (𝑁 ∈ (0..^(♯‘𝑆)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (♯‘𝑆) ∈ ℤ ∧ 𝑁 < (♯‘𝑆))) | |
15 | 7, 10, 13, 14 | mpbir3an 1342 | . . . 4 ⊢ 𝑁 ∈ (0..^(♯‘𝑆)) |
16 | ccatval1 14527 | . . . 4 ⊢ ((𝑆 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V ∧ 𝑁 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁) = (𝑆‘𝑁)) | |
17 | 3, 4, 15, 16 | mp3an 1462 | . . 3 ⊢ ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁) = (𝑆‘𝑁) |
18 | 2, 17 | eqtri 2761 | . 2 ⊢ (𝑇‘𝑁) = (𝑆‘𝑁) |
19 | cats1fv.4 | . 2 ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) | |
20 | 18, 19 | eqtrid 2785 | 1 ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 0cc0 11110 < clt 11248 ℕ0cn0 12472 ℤcz 12558 ℤ≥cuz 12822 ..^cfzo 13627 ♯chash 14290 Word cword 14464 ++ cconcat 14520 ⟨“cs1 14545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 df-s1 14546 |
This theorem is referenced by: s2fv0 14838 s3fv0 14842 s3fv1 14843 s4fv0 14846 s4fv1 14847 s4fv2 14848 |
Copyright terms: Public domain | W3C validator |