Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cats1fv | Structured version Visualization version GIF version |
Description: A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
cats1cld.1 | ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) |
cats1cli.2 | ⊢ 𝑆 ∈ Word V |
cats1fvn.3 | ⊢ (♯‘𝑆) = 𝑀 |
cats1fv.4 | ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) |
cats1fv.5 | ⊢ 𝑁 ∈ ℕ0 |
cats1fv.6 | ⊢ 𝑁 < 𝑀 |
Ref | Expression |
---|---|
cats1fv | ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cats1cld.1 | . . . 4 ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) | |
2 | 1 | fveq1i 6736 | . . 3 ⊢ (𝑇‘𝑁) = ((𝑆 ++ 〈“𝑋”〉)‘𝑁) |
3 | cats1cli.2 | . . . 4 ⊢ 𝑆 ∈ Word V | |
4 | s1cli 14186 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
5 | cats1fv.5 | . . . . . 6 ⊢ 𝑁 ∈ ℕ0 | |
6 | nn0uz 12500 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | 5, 6 | eleqtri 2837 | . . . . 5 ⊢ 𝑁 ∈ (ℤ≥‘0) |
8 | lencl 14112 | . . . . . 6 ⊢ (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0) | |
9 | nn0z 12224 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℤ) | |
10 | 3, 8, 9 | mp2b 10 | . . . . 5 ⊢ (♯‘𝑆) ∈ ℤ |
11 | cats1fv.6 | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
12 | cats1fvn.3 | . . . . . 6 ⊢ (♯‘𝑆) = 𝑀 | |
13 | 11, 12 | breqtrri 5094 | . . . . 5 ⊢ 𝑁 < (♯‘𝑆) |
14 | elfzo2 13270 | . . . . 5 ⊢ (𝑁 ∈ (0..^(♯‘𝑆)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (♯‘𝑆) ∈ ℤ ∧ 𝑁 < (♯‘𝑆))) | |
15 | 7, 10, 13, 14 | mpbir3an 1343 | . . . 4 ⊢ 𝑁 ∈ (0..^(♯‘𝑆)) |
16 | ccatval1 14157 | . . . 4 ⊢ ((𝑆 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V ∧ 𝑁 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 〈“𝑋”〉)‘𝑁) = (𝑆‘𝑁)) | |
17 | 3, 4, 15, 16 | mp3an 1463 | . . 3 ⊢ ((𝑆 ++ 〈“𝑋”〉)‘𝑁) = (𝑆‘𝑁) |
18 | 2, 17 | eqtri 2766 | . 2 ⊢ (𝑇‘𝑁) = (𝑆‘𝑁) |
19 | cats1fv.4 | . 2 ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) | |
20 | 18, 19 | eqtrid 2790 | 1 ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 Vcvv 3420 class class class wbr 5067 ‘cfv 6397 (class class class)co 7231 0cc0 10753 < clt 10891 ℕ0cn0 12114 ℤcz 12200 ℤ≥cuz 12462 ..^cfzo 13262 ♯chash 13920 Word cword 14093 ++ cconcat 14149 〈“cs1 14176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-card 9579 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-fzo 13263 df-hash 13921 df-word 14094 df-concat 14150 df-s1 14177 |
This theorem is referenced by: s2fv0 14476 s3fv0 14480 s3fv1 14481 s4fv0 14484 s4fv1 14485 s4fv2 14486 |
Copyright terms: Public domain | W3C validator |