MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1fv Structured version   Visualization version   GIF version

Theorem cats1fv 14810
Description: A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
cats1cld.1 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
cats1cli.2 𝑆 ∈ Word V
cats1fvn.3 (♯‘𝑆) = 𝑀
cats1fv.4 (𝑌𝑉 → (𝑆𝑁) = 𝑌)
cats1fv.5 𝑁 ∈ ℕ0
cats1fv.6 𝑁 < 𝑀
Assertion
Ref Expression
cats1fv (𝑌𝑉 → (𝑇𝑁) = 𝑌)

Proof of Theorem cats1fv
StepHypRef Expression
1 cats1cld.1 . . . 4 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
21fveq1i 6893 . . 3 (𝑇𝑁) = ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁)
3 cats1cli.2 . . . 4 𝑆 ∈ Word V
4 s1cli 14555 . . . 4 ⟨“𝑋”⟩ ∈ Word V
5 cats1fv.5 . . . . . 6 𝑁 ∈ ℕ0
6 nn0uz 12864 . . . . . 6 0 = (ℤ‘0)
75, 6eleqtri 2832 . . . . 5 𝑁 ∈ (ℤ‘0)
8 lencl 14483 . . . . . 6 (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0)
9 nn0z 12583 . . . . . 6 ((♯‘𝑆) ∈ ℕ0 → (♯‘𝑆) ∈ ℤ)
103, 8, 9mp2b 10 . . . . 5 (♯‘𝑆) ∈ ℤ
11 cats1fv.6 . . . . . 6 𝑁 < 𝑀
12 cats1fvn.3 . . . . . 6 (♯‘𝑆) = 𝑀
1311, 12breqtrri 5176 . . . . 5 𝑁 < (♯‘𝑆)
14 elfzo2 13635 . . . . 5 (𝑁 ∈ (0..^(♯‘𝑆)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ ℤ ∧ 𝑁 < (♯‘𝑆)))
157, 10, 13, 14mpbir3an 1342 . . . 4 𝑁 ∈ (0..^(♯‘𝑆))
16 ccatval1 14527 . . . 4 ((𝑆 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V ∧ 𝑁 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁) = (𝑆𝑁))
173, 4, 15, 16mp3an 1462 . . 3 ((𝑆 ++ ⟨“𝑋”⟩)‘𝑁) = (𝑆𝑁)
182, 17eqtri 2761 . 2 (𝑇𝑁) = (𝑆𝑁)
19 cats1fv.4 . 2 (𝑌𝑉 → (𝑆𝑁) = 𝑌)
2018, 19eqtrid 2785 1 (𝑌𝑉 → (𝑇𝑁) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3475   class class class wbr 5149  cfv 6544  (class class class)co 7409  0cc0 11110   < clt 11248  0cn0 12472  cz 12558  cuz 12822  ..^cfzo 13627  chash 14290  Word cword 14464   ++ cconcat 14520  ⟨“cs1 14545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-s1 14546
This theorem is referenced by:  s2fv0  14838  s3fv0  14842  s3fv1  14843  s4fv0  14846  s4fv1  14847  s4fv2  14848
  Copyright terms: Public domain W3C validator