Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem59 Structured version   Visualization version   GIF version

Theorem fourierdlem59 46136
Description: The derivative of 𝐻 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem59.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem59.x (𝜑𝑋 ∈ ℝ)
fourierdlem59.a (𝜑𝐴 ∈ ℝ)
fourierdlem59.b (𝜑𝐵 ∈ ℝ)
fourierdlem59.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem59.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
fourierdlem59.c (𝜑𝐶 ∈ ℝ)
fourierdlem59.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
Assertion
Ref Expression
fourierdlem59 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem59
StepHypRef Expression
1 fourierdlem59.f . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
3 fourierdlem59.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
43adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5 elioore 13312 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
65adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
74, 6readdcld 11179 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
82, 7ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
9 fourierdlem59.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
118, 10resubcld 11582 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
12 eqcom 2736 . . . . . . . . . . . 12 (𝑠 = 0 ↔ 0 = 𝑠)
1312biimpi 216 . . . . . . . . . . 11 (𝑠 = 0 → 0 = 𝑠)
1413adantl 481 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
15 simpl 482 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
1614, 15eqeltrd 2828 . . . . . . . . 9 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
1716adantll 714 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
18 fourierdlem59.n0 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
2017, 19pm2.65da 816 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
2120neqned 2932 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2211, 6, 21redivcld 11986 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
23 fourierdlem59.h . . . . 5 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2422, 23fmptd 7068 . . . 4 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
25 ioossre 13344 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 25831 . . . 4 ((𝐻:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
2824, 26, 27syl2anc 584 . . 3 (𝜑 → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
29 ovex 7402 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ V
3029a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ∈ V)
31 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
32 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))
3330, 11, 6, 31, 32offval2 7653 . . . . . . . 8 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)))
3423, 33eqtr4id 2783 . . . . . . 7 (𝜑𝐻 = ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)))
3534oveq2d 7385 . . . . . 6 (𝜑 → (ℝ D 𝐻) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))))
36 reelprrecn 11136 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
3811recnd 11178 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
39 eqid 2729 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))
4038, 39fmptd 7068 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)):(𝐴(,)𝐵)⟶ℂ)
416recnd 11178 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
42 eldifsn 4746 . . . . . . . . 9 (𝑠 ∈ (ℂ ∖ {0}) ↔ (𝑠 ∈ ℂ ∧ 𝑠 ≠ 0))
4341, 21, 42sylanbrc 583 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
44 eqid 2729 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)
4543, 44fmptd 7068 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠):(𝐴(,)𝐵)⟶(ℂ ∖ {0}))
46 eqidd 2730 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))))
47 eqidd 2730 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))
4830, 8, 10, 46, 47offval2 7653 . . . . . . . . . 10 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
4948eqcomd 2735 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)))
5049oveq2d 7385 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))))
518recnd 11178 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
52 eqid 2729 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))
5351, 52fmptd 7068 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))):(𝐴(,)𝐵)⟶ℂ)
5410recnd 11178 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
55 eqid 2729 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)
5654, 55fmptd 7068 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶):(𝐴(,)𝐵)⟶ℂ)
57 fourierdlem59.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
58 fourierdlem59.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
59 eqid 2729 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
60 fourierdlem59.fdv . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
61 cncff 24762 . . . . . . . . . . . 12 ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
631, 3, 57, 58, 59, 62fourierdlem28 46106 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
64 ioosscn 13345 . . . . . . . . . . . 12 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ
6564a1i 11 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ)
66 ax-resscn 11101 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6766a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
6862, 67fssd 6687 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ)
69 ssid 3966 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
71 cncfcdm 24767 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7270, 60, 71syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7368, 72mpbird 257 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ))
74 ioosscn 13345 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
7574a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
763recnd 11178 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
773, 57readdcld 11179 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
7877rexrd 11200 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
803, 58readdcld 11179 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
8180rexrd 11200 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
8281adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
8357adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
8483rexrd 11200 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8558rexrd 11200 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
8685adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
87 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
88 ioogtlb 45466 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
8984, 86, 87, 88syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
9083, 6, 4, 89ltadd2dd 11309 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
9158adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
92 iooltub 45481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
9384, 86, 87, 92syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
946, 91, 4, 93ltadd2dd 11309 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
9579, 82, 7, 90, 94eliood 45469 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9665, 73, 75, 76, 95fourierdlem23 46101 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9763, 96eqeltrd 2828 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
98 iooretop 24629 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
99 tgioo4 24669 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10098, 99eleqtri 2826 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
101100a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1029recnd 11178 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
10337, 101, 102dvmptconst 45886 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
104 0cnd 11143 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
10575, 104, 70constcncfg 45843 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 0) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106103, 105eqeltrd 2828 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10737, 53, 56, 97, 106dvsubcncf 45895 . . . . . . . 8 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10850, 107eqeltrd 2828 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10937, 101dvmptidg 45888 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
110 1cnd 11145 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
11175, 110, 70constcncfg 45843 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
112109, 111eqeltrd 2828 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11337, 40, 45, 108, 112dvdivcncf 45898 . . . . . 6 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11435, 113eqeltrd 2828 . . . . 5 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
115 cncff 24762 . . . . 5 ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ)
116 fdm 6679 . . . . 5 ((ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
117114, 115, 1163syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
118117feq2d 6654 . . 3 (𝜑 → ((ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
11928, 118mpbid 232 . 2 (𝜑 → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ)
120 cncfcdm 24767 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
12167, 114, 120syl2anc 584 . 2 (𝜑 → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
122119, 121mpbird 257 1 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  {cpr 4587   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  *cxr 11183   < clt 11184  cmin 11381   / cdiv 11811  (,)cioo 13282  t crest 17359  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  cnccncf 24745   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-t1 23177  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem72  46149
  Copyright terms: Public domain W3C validator