Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem59 Structured version   Visualization version   GIF version

Theorem fourierdlem59 46163
Description: The derivative of 𝐻 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem59.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem59.x (𝜑𝑋 ∈ ℝ)
fourierdlem59.a (𝜑𝐴 ∈ ℝ)
fourierdlem59.b (𝜑𝐵 ∈ ℝ)
fourierdlem59.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem59.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
fourierdlem59.c (𝜑𝐶 ∈ ℝ)
fourierdlem59.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
Assertion
Ref Expression
fourierdlem59 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem59
StepHypRef Expression
1 fourierdlem59.f . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
3 fourierdlem59.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
43adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5 elioore 13336 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
65adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
74, 6readdcld 11203 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
82, 7ffvelcdmd 7057 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
9 fourierdlem59.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
118, 10resubcld 11606 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
12 eqcom 2736 . . . . . . . . . . . 12 (𝑠 = 0 ↔ 0 = 𝑠)
1312biimpi 216 . . . . . . . . . . 11 (𝑠 = 0 → 0 = 𝑠)
1413adantl 481 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
15 simpl 482 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
1614, 15eqeltrd 2828 . . . . . . . . 9 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
1716adantll 714 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
18 fourierdlem59.n0 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
2017, 19pm2.65da 816 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
2120neqned 2932 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2211, 6, 21redivcld 12010 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
23 fourierdlem59.h . . . . 5 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2422, 23fmptd 7086 . . . 4 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
25 ioossre 13368 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 25855 . . . 4 ((𝐻:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
2824, 26, 27syl2anc 584 . . 3 (𝜑 → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
29 ovex 7420 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ V
3029a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ∈ V)
31 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
32 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))
3330, 11, 6, 31, 32offval2 7673 . . . . . . . 8 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)))
3423, 33eqtr4id 2783 . . . . . . 7 (𝜑𝐻 = ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)))
3534oveq2d 7403 . . . . . 6 (𝜑 → (ℝ D 𝐻) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))))
36 reelprrecn 11160 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
3811recnd 11202 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
39 eqid 2729 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))
4038, 39fmptd 7086 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)):(𝐴(,)𝐵)⟶ℂ)
416recnd 11202 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
42 eldifsn 4750 . . . . . . . . 9 (𝑠 ∈ (ℂ ∖ {0}) ↔ (𝑠 ∈ ℂ ∧ 𝑠 ≠ 0))
4341, 21, 42sylanbrc 583 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
44 eqid 2729 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)
4543, 44fmptd 7086 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠):(𝐴(,)𝐵)⟶(ℂ ∖ {0}))
46 eqidd 2730 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))))
47 eqidd 2730 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))
4830, 8, 10, 46, 47offval2 7673 . . . . . . . . . 10 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
4948eqcomd 2735 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)))
5049oveq2d 7403 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))))
518recnd 11202 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
52 eqid 2729 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))
5351, 52fmptd 7086 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))):(𝐴(,)𝐵)⟶ℂ)
5410recnd 11202 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
55 eqid 2729 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)
5654, 55fmptd 7086 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶):(𝐴(,)𝐵)⟶ℂ)
57 fourierdlem59.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
58 fourierdlem59.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
59 eqid 2729 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
60 fourierdlem59.fdv . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
61 cncff 24786 . . . . . . . . . . . 12 ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
631, 3, 57, 58, 59, 62fourierdlem28 46133 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
64 ioosscn 13369 . . . . . . . . . . . 12 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ
6564a1i 11 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ)
66 ax-resscn 11125 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6766a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
6862, 67fssd 6705 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ)
69 ssid 3969 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
71 cncfcdm 24791 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7270, 60, 71syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7368, 72mpbird 257 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ))
74 ioosscn 13369 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
7574a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
763recnd 11202 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
773, 57readdcld 11203 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
7877rexrd 11224 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
803, 58readdcld 11203 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
8180rexrd 11224 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
8281adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
8357adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
8483rexrd 11224 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8558rexrd 11224 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
8685adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
87 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
88 ioogtlb 45493 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
8984, 86, 87, 88syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
9083, 6, 4, 89ltadd2dd 11333 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
9158adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
92 iooltub 45508 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
9384, 86, 87, 92syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
946, 91, 4, 93ltadd2dd 11333 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
9579, 82, 7, 90, 94eliood 45496 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9665, 73, 75, 76, 95fourierdlem23 46128 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9763, 96eqeltrd 2828 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
98 iooretop 24653 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
99 tgioo4 24693 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10098, 99eleqtri 2826 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
101100a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1029recnd 11202 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
10337, 101, 102dvmptconst 45913 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
104 0cnd 11167 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
10575, 104, 70constcncfg 45870 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 0) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106103, 105eqeltrd 2828 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10737, 53, 56, 97, 106dvsubcncf 45922 . . . . . . . 8 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10850, 107eqeltrd 2828 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10937, 101dvmptidg 45915 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
110 1cnd 11169 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
11175, 110, 70constcncfg 45870 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
112109, 111eqeltrd 2828 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11337, 40, 45, 108, 112dvdivcncf 45925 . . . . . 6 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11435, 113eqeltrd 2828 . . . . 5 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
115 cncff 24786 . . . . 5 ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ)
116 fdm 6697 . . . . 5 ((ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
117114, 115, 1163syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
118117feq2d 6672 . . 3 (𝜑 → ((ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
11928, 118mpbid 232 . 2 (𝜑 → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ)
120 cncfcdm 24791 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
12167, 114, 120syl2anc 584 . 2 (𝜑 → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
122119, 121mpbird 257 1 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cmin 11405   / cdiv 11835  (,)cioo 13306  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  cnccncf 24769   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  fourierdlem72  46176
  Copyright terms: Public domain W3C validator