Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem59 Structured version   Visualization version   GIF version

Theorem fourierdlem59 46185
Description: The derivative of 𝐻 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem59.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem59.x (𝜑𝑋 ∈ ℝ)
fourierdlem59.a (𝜑𝐴 ∈ ℝ)
fourierdlem59.b (𝜑𝐵 ∈ ℝ)
fourierdlem59.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem59.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
fourierdlem59.c (𝜑𝐶 ∈ ℝ)
fourierdlem59.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
Assertion
Ref Expression
fourierdlem59 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem59
StepHypRef Expression
1 fourierdlem59.f . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
3 fourierdlem59.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
43adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5 elioore 13418 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
65adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
74, 6readdcld 11291 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
82, 7ffvelcdmd 7104 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
9 fourierdlem59.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
118, 10resubcld 11692 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
12 eqcom 2743 . . . . . . . . . . . 12 (𝑠 = 0 ↔ 0 = 𝑠)
1312biimpi 216 . . . . . . . . . . 11 (𝑠 = 0 → 0 = 𝑠)
1413adantl 481 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
15 simpl 482 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
1614, 15eqeltrd 2840 . . . . . . . . 9 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
1716adantll 714 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
18 fourierdlem59.n0 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
2017, 19pm2.65da 816 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
2120neqned 2946 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2211, 6, 21redivcld 12096 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
23 fourierdlem59.h . . . . 5 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2422, 23fmptd 7133 . . . 4 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
25 ioossre 13449 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 25990 . . . 4 ((𝐻:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
2824, 26, 27syl2anc 584 . . 3 (𝜑 → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
29 ovex 7465 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ V
3029a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ∈ V)
31 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
32 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))
3330, 11, 6, 31, 32offval2 7718 . . . . . . . 8 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)))
3423, 33eqtr4id 2795 . . . . . . 7 (𝜑𝐻 = ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)))
3534oveq2d 7448 . . . . . 6 (𝜑 → (ℝ D 𝐻) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))))
36 reelprrecn 11248 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
3811recnd 11290 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
39 eqid 2736 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))
4038, 39fmptd 7133 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)):(𝐴(,)𝐵)⟶ℂ)
416recnd 11290 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
42 eldifsn 4785 . . . . . . . . 9 (𝑠 ∈ (ℂ ∖ {0}) ↔ (𝑠 ∈ ℂ ∧ 𝑠 ≠ 0))
4341, 21, 42sylanbrc 583 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
44 eqid 2736 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)
4543, 44fmptd 7133 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠):(𝐴(,)𝐵)⟶(ℂ ∖ {0}))
46 eqidd 2737 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))))
47 eqidd 2737 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))
4830, 8, 10, 46, 47offval2 7718 . . . . . . . . . 10 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
4948eqcomd 2742 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)))
5049oveq2d 7448 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))))
518recnd 11290 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
52 eqid 2736 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))
5351, 52fmptd 7133 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))):(𝐴(,)𝐵)⟶ℂ)
5410recnd 11290 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
55 eqid 2736 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)
5654, 55fmptd 7133 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶):(𝐴(,)𝐵)⟶ℂ)
57 fourierdlem59.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
58 fourierdlem59.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
59 eqid 2736 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
60 fourierdlem59.fdv . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
61 cncff 24920 . . . . . . . . . . . 12 ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
631, 3, 57, 58, 59, 62fourierdlem28 46155 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
64 ioosscn 13450 . . . . . . . . . . . 12 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ
6564a1i 11 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ)
66 ax-resscn 11213 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6766a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
6862, 67fssd 6752 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ)
69 ssid 4005 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
71 cncfcdm 24925 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7270, 60, 71syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7368, 72mpbird 257 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ))
74 ioosscn 13450 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
7574a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
763recnd 11290 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
773, 57readdcld 11291 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
7877rexrd 11312 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
803, 58readdcld 11291 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
8180rexrd 11312 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
8281adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
8357adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
8483rexrd 11312 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8558rexrd 11312 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
8685adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
87 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
88 ioogtlb 45513 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
8984, 86, 87, 88syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
9083, 6, 4, 89ltadd2dd 11421 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
9158adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
92 iooltub 45528 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
9384, 86, 87, 92syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
946, 91, 4, 93ltadd2dd 11421 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
9579, 82, 7, 90, 94eliood 45516 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9665, 73, 75, 76, 95fourierdlem23 46150 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9763, 96eqeltrd 2840 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
98 iooretop 24787 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
99 tgioo4 24827 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10098, 99eleqtri 2838 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
101100a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1029recnd 11290 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
10337, 101, 102dvmptconst 45935 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
104 0cnd 11255 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
10575, 104, 70constcncfg 45892 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 0) ∈ ((𝐴(,)𝐵)–cn→ℂ))
106103, 105eqeltrd 2840 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10737, 53, 56, 97, 106dvsubcncf 45944 . . . . . . . 8 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10850, 107eqeltrd 2840 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10937, 101dvmptidg 45937 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
110 1cnd 11257 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
11175, 110, 70constcncfg 45892 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
112109, 111eqeltrd 2840 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11337, 40, 45, 108, 112dvdivcncf 45947 . . . . . 6 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11435, 113eqeltrd 2840 . . . . 5 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
115 cncff 24920 . . . . 5 ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ)
116 fdm 6744 . . . . 5 ((ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
117114, 115, 1163syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
118117feq2d 6721 . . 3 (𝜑 → ((ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
11928, 118mpbid 232 . 2 (𝜑 → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ)
120 cncfcdm 24925 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
12167, 114, 120syl2anc 584 . 2 (𝜑 → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
122119, 121mpbird 257 1 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  cdif 3947  wss 3950  {csn 4625  {cpr 4627   class class class wbr 5142  cmpt 5224  dom cdm 5684  ran crn 5685  cres 5686  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159  *cxr 11295   < clt 11296  cmin 11493   / cdiv 11921  (,)cioo 13388  t crest 17466  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21365  cnccncf 24903   D cdv 25899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-t1 23323  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903
This theorem is referenced by:  fourierdlem72  46198
  Copyright terms: Public domain W3C validator