Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem59 Structured version   Visualization version   GIF version

Theorem fourierdlem59 42457
Description: The derivative of 𝐻 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem59.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem59.x (𝜑𝑋 ∈ ℝ)
fourierdlem59.a (𝜑𝐴 ∈ ℝ)
fourierdlem59.b (𝜑𝐵 ∈ ℝ)
fourierdlem59.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem59.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
fourierdlem59.c (𝜑𝐶 ∈ ℝ)
fourierdlem59.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
Assertion
Ref Expression
fourierdlem59 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem59
StepHypRef Expression
1 fourierdlem59.f . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21adantr 483 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
3 fourierdlem59.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
43adantr 483 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5 elioore 12771 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
65adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
74, 6readdcld 10672 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
82, 7ffvelrnd 6854 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
9 fourierdlem59.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109adantr 483 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
118, 10resubcld 11070 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
12 eqcom 2830 . . . . . . . . . . . 12 (𝑠 = 0 ↔ 0 = 𝑠)
1312biimpi 218 . . . . . . . . . . 11 (𝑠 = 0 → 0 = 𝑠)
1413adantl 484 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
15 simpl 485 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
1614, 15eqeltrd 2915 . . . . . . . . 9 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
1716adantll 712 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
18 fourierdlem59.n0 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
1918ad2antrr 724 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
2017, 19pm2.65da 815 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
2120neqned 3025 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2211, 6, 21redivcld 11470 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
23 fourierdlem59.h . . . . 5 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2422, 23fmptd 6880 . . . 4 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
25 ioossre 12801 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 24550 . . . 4 ((𝐻:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
2824, 26, 27syl2anc 586 . . 3 (𝜑 → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
29 ovex 7191 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ V
3029a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ∈ V)
31 eqidd 2824 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
32 eqidd 2824 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))
3330, 11, 6, 31, 32offval2 7428 . . . . . . . 8 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)))
3433, 23syl6reqr 2877 . . . . . . 7 (𝜑𝐻 = ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)))
3534oveq2d 7174 . . . . . 6 (𝜑 → (ℝ D 𝐻) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))))
36 reelprrecn 10631 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
3811recnd 10671 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
39 eqid 2823 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))
4038, 39fmptd 6880 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)):(𝐴(,)𝐵)⟶ℂ)
416recnd 10671 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
42 eldifsn 4721 . . . . . . . . 9 (𝑠 ∈ (ℂ ∖ {0}) ↔ (𝑠 ∈ ℂ ∧ 𝑠 ≠ 0))
4341, 21, 42sylanbrc 585 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
44 eqid 2823 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)
4543, 44fmptd 6880 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠):(𝐴(,)𝐵)⟶(ℂ ∖ {0}))
46 eqidd 2824 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))))
47 eqidd 2824 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))
4830, 8, 10, 46, 47offval2 7428 . . . . . . . . . 10 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
4948eqcomd 2829 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)))
5049oveq2d 7174 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))))
518recnd 10671 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
52 eqid 2823 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))
5351, 52fmptd 6880 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))):(𝐴(,)𝐵)⟶ℂ)
5410recnd 10671 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
55 eqid 2823 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)
5654, 55fmptd 6880 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶):(𝐴(,)𝐵)⟶ℂ)
57 fourierdlem59.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
58 fourierdlem59.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
59 eqid 2823 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
60 fourierdlem59.fdv . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
61 cncff 23503 . . . . . . . . . . . 12 ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
631, 3, 57, 58, 59, 62fourierdlem28 42427 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
64 ioosscn 41776 . . . . . . . . . . . 12 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ
6564a1i 11 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ)
66 ax-resscn 10596 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6766a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
6862, 67fssd 6530 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ)
69 ssid 3991 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
71 cncffvrn 23508 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7270, 60, 71syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7368, 72mpbird 259 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ))
74 ioosscn 41776 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
7574a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
763recnd 10671 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
773, 57readdcld 10672 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
7877rexrd 10693 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
7978adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
803, 58readdcld 10672 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
8180rexrd 10693 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
8281adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
8357adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
8483rexrd 10693 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8558rexrd 10693 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
8685adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
87 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
88 ioogtlb 41777 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
8984, 86, 87, 88syl3anc 1367 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
9083, 6, 4, 89ltadd2dd 10801 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
9158adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
92 iooltub 41793 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
9384, 86, 87, 92syl3anc 1367 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
946, 91, 4, 93ltadd2dd 10801 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
9579, 82, 7, 90, 94eliood 41780 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9665, 73, 75, 76, 95fourierdlem23 42422 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9763, 96eqeltrd 2915 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
98 iooretop 23376 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
99 eqid 2823 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099tgioo2 23413 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10198, 100eleqtri 2913 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
102101a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1039recnd 10671 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
10437, 102, 103dvmptconst 42206 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
105 0cnd 10636 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
10675, 105, 70constcncfg 42161 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 0) ∈ ((𝐴(,)𝐵)–cn→ℂ))
107104, 106eqeltrd 2915 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10837, 53, 56, 97, 107dvsubcncf 42216 . . . . . . . 8 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘f − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10950, 108eqeltrd 2915 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11037, 102dvmptidg 42208 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
111 1cnd 10638 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
11275, 111, 70constcncfg 42161 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
113110, 112eqeltrd 2915 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11437, 40, 45, 109, 113dvdivcncf 42219 . . . . . 6 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘f / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11535, 114eqeltrd 2915 . . . . 5 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
116 cncff 23503 . . . . 5 ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ)
117 fdm 6524 . . . . 5 ((ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
118115, 116, 1173syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
119118feq2d 6502 . . 3 (𝜑 → ((ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
12028, 119mpbid 234 . 2 (𝜑 → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ)
121 cncffvrn 23508 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
12267, 115, 121syl2anc 586 . 2 (𝜑 → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
123120, 122mpbird 259 1 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  wss 3938  {csn 4569  {cpr 4571   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  *cxr 10676   < clt 10677  cmin 10872   / cdiv 11299  (,)cioo 12741  t crest 16696  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  cnccncf 23486   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  fourierdlem72  42470
  Copyright terms: Public domain W3C validator