| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfres | Structured version Visualization version GIF version | ||
| Description: A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| cncfres.1 | ⊢ 𝐴 ⊆ ℂ |
| cncfres.2 | ⊢ 𝐵 ⊆ ℂ |
| cncfres.3 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) |
| cncfres.4 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| cncfres.5 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| cncfres.6 | ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
| cncfres.7 | ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) |
| cncfres.8 | ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| cncfres | ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfres.4 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 2 | cncfres.5 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 3 | 1, 2 | fmpti 7102 | . . 3 ⊢ 𝐺:𝐴⟶𝐵 |
| 4 | cncfres.2 | . . . 4 ⊢ 𝐵 ⊆ ℂ | |
| 5 | cncfres.1 | . . . . . . 7 ⊢ 𝐴 ⊆ ℂ | |
| 6 | resmpt 6024 | . . . . . . 7 ⊢ (𝐴 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| 8 | 1, 7 | eqtr4i 2761 | . . . . 5 ⊢ 𝐺 = ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) |
| 9 | cncfres.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) | |
| 10 | cncfres.6 | . . . . . . 7 ⊢ 𝐹 ∈ (ℂ–cn→ℂ) | |
| 11 | 9, 10 | eqeltrri 2831 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ) |
| 12 | rescncf 24841 | . . . . . 6 ⊢ (𝐴 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) ∈ (𝐴–cn→ℂ))) | |
| 13 | 5, 11, 12 | mp2 9 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) ∈ (𝐴–cn→ℂ) |
| 14 | 8, 13 | eqeltri 2830 | . . . 4 ⊢ 𝐺 ∈ (𝐴–cn→ℂ) |
| 15 | cncfcdm 24842 | . . . 4 ⊢ ((𝐵 ⊆ ℂ ∧ 𝐺 ∈ (𝐴–cn→ℂ)) → (𝐺 ∈ (𝐴–cn→𝐵) ↔ 𝐺:𝐴⟶𝐵)) | |
| 16 | 4, 14, 15 | mp2an 692 | . . 3 ⊢ (𝐺 ∈ (𝐴–cn→𝐵) ↔ 𝐺:𝐴⟶𝐵) |
| 17 | 3, 16 | mpbir 231 | . 2 ⊢ 𝐺 ∈ (𝐴–cn→𝐵) |
| 18 | eqid 2735 | . . . 4 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
| 19 | eqid 2735 | . . . 4 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
| 20 | cncfres.7 | . . . 4 ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
| 21 | cncfres.8 | . . . 4 ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
| 22 | 18, 19, 20, 21 | cncfmet 24853 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐽 Cn 𝐾)) |
| 23 | 5, 4, 22 | mp2an 692 | . 2 ⊢ (𝐴–cn→𝐵) = (𝐽 Cn 𝐾) |
| 24 | 17, 23 | eleqtri 2832 | 1 ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ↦ cmpt 5201 × cxp 5652 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 − cmin 11466 abscabs 15253 MetOpencmopn 21305 Cn ccn 23162 –cn→ccncf 24820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cn 23165 df-cnp 23166 df-cncf 24822 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |