Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfres | Structured version Visualization version GIF version |
Description: A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
cncfres.1 | ⊢ 𝐴 ⊆ ℂ |
cncfres.2 | ⊢ 𝐵 ⊆ ℂ |
cncfres.3 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) |
cncfres.4 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
cncfres.5 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
cncfres.6 | ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
cncfres.7 | ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) |
cncfres.8 | ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
cncfres | ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfres.4 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
2 | cncfres.5 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
3 | 1, 2 | fmpti 6929 | . . 3 ⊢ 𝐺:𝐴⟶𝐵 |
4 | cncfres.2 | . . . 4 ⊢ 𝐵 ⊆ ℂ | |
5 | cncfres.1 | . . . . . . 7 ⊢ 𝐴 ⊆ ℂ | |
6 | resmpt 5905 | . . . . . . 7 ⊢ (𝐴 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
8 | 1, 7 | eqtr4i 2768 | . . . . 5 ⊢ 𝐺 = ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) |
9 | cncfres.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) | |
10 | cncfres.6 | . . . . . . 7 ⊢ 𝐹 ∈ (ℂ–cn→ℂ) | |
11 | 9, 10 | eqeltrri 2835 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ) |
12 | rescncf 23794 | . . . . . 6 ⊢ (𝐴 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) ∈ (𝐴–cn→ℂ))) | |
13 | 5, 11, 12 | mp2 9 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) ∈ (𝐴–cn→ℂ) |
14 | 8, 13 | eqeltri 2834 | . . . 4 ⊢ 𝐺 ∈ (𝐴–cn→ℂ) |
15 | cncffvrn 23795 | . . . 4 ⊢ ((𝐵 ⊆ ℂ ∧ 𝐺 ∈ (𝐴–cn→ℂ)) → (𝐺 ∈ (𝐴–cn→𝐵) ↔ 𝐺:𝐴⟶𝐵)) | |
16 | 4, 14, 15 | mp2an 692 | . . 3 ⊢ (𝐺 ∈ (𝐴–cn→𝐵) ↔ 𝐺:𝐴⟶𝐵) |
17 | 3, 16 | mpbir 234 | . 2 ⊢ 𝐺 ∈ (𝐴–cn→𝐵) |
18 | eqid 2737 | . . . 4 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
19 | eqid 2737 | . . . 4 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
20 | cncfres.7 | . . . 4 ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
21 | cncfres.8 | . . . 4 ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
22 | 18, 19, 20, 21 | cncfmet 23806 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐽 Cn 𝐾)) |
23 | 5, 4, 22 | mp2an 692 | . 2 ⊢ (𝐴–cn→𝐵) = (𝐽 Cn 𝐾) |
24 | 17, 23 | eleqtri 2836 | 1 ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ↦ cmpt 5135 × cxp 5549 ↾ cres 5553 ∘ ccom 5555 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 − cmin 11062 abscabs 14797 MetOpencmopn 20353 Cn ccn 22121 –cn→ccncf 23773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-topgen 16948 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-top 21791 df-topon 21808 df-bases 21843 df-cn 22124 df-cnp 22125 df-cncf 23775 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |