![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfres | Structured version Visualization version GIF version |
Description: A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
cncfres.1 | ⊢ 𝐴 ⊆ ℂ |
cncfres.2 | ⊢ 𝐵 ⊆ ℂ |
cncfres.3 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) |
cncfres.4 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
cncfres.5 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
cncfres.6 | ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
cncfres.7 | ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) |
cncfres.8 | ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
cncfres | ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfres.4 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
2 | cncfres.5 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
3 | 1, 2 | fmpti 6693 | . . 3 ⊢ 𝐺:𝐴⟶𝐵 |
4 | cncfres.2 | . . . 4 ⊢ 𝐵 ⊆ ℂ | |
5 | cncfres.1 | . . . . . . 7 ⊢ 𝐴 ⊆ ℂ | |
6 | resmpt 5744 | . . . . . . 7 ⊢ (𝐴 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
8 | 1, 7 | eqtr4i 2799 | . . . . 5 ⊢ 𝐺 = ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) |
9 | cncfres.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) | |
10 | cncfres.6 | . . . . . . 7 ⊢ 𝐹 ∈ (ℂ–cn→ℂ) | |
11 | 9, 10 | eqeltrri 2857 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ) |
12 | rescncf 23202 | . . . . . 6 ⊢ (𝐴 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) ∈ (𝐴–cn→ℂ))) | |
13 | 5, 11, 12 | mp2 9 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ 𝐶) ↾ 𝐴) ∈ (𝐴–cn→ℂ) |
14 | 8, 13 | eqeltri 2856 | . . . 4 ⊢ 𝐺 ∈ (𝐴–cn→ℂ) |
15 | cncffvrn 23203 | . . . 4 ⊢ ((𝐵 ⊆ ℂ ∧ 𝐺 ∈ (𝐴–cn→ℂ)) → (𝐺 ∈ (𝐴–cn→𝐵) ↔ 𝐺:𝐴⟶𝐵)) | |
16 | 4, 14, 15 | mp2an 679 | . . 3 ⊢ (𝐺 ∈ (𝐴–cn→𝐵) ↔ 𝐺:𝐴⟶𝐵) |
17 | 3, 16 | mpbir 223 | . 2 ⊢ 𝐺 ∈ (𝐴–cn→𝐵) |
18 | eqid 2772 | . . . 4 ⊢ ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) | |
19 | eqid 2772 | . . . 4 ⊢ ((abs ∘ − ) ↾ (𝐵 × 𝐵)) = ((abs ∘ − ) ↾ (𝐵 × 𝐵)) | |
20 | cncfres.7 | . . . 4 ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) | |
21 | cncfres.8 | . . . 4 ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) | |
22 | 18, 19, 20, 21 | cncfmet 23213 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐽 Cn 𝐾)) |
23 | 5, 4, 22 | mp2an 679 | . 2 ⊢ (𝐴–cn→𝐵) = (𝐽 Cn 𝐾) |
24 | 17, 23 | eleqtri 2858 | 1 ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ⊆ wss 3823 ↦ cmpt 5002 × cxp 5399 ↾ cres 5403 ∘ ccom 5405 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 ℂcc 10327 − cmin 10664 abscabs 14448 MetOpencmopn 20231 Cn ccn 21530 –cn→ccncf 23181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-sup 8695 df-inf 8696 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-z 11788 df-uz 12053 df-q 12157 df-rp 12199 df-xneg 12318 df-xadd 12319 df-xmul 12320 df-seq 13179 df-exp 13239 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-topgen 16567 df-psmet 20233 df-xmet 20234 df-met 20235 df-bl 20236 df-mopn 20237 df-top 21200 df-topon 21217 df-bases 21252 df-cn 21533 df-cnp 21534 df-cncf 23183 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |