MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly2 Structured version   Visualization version   GIF version

Theorem bpoly2 15974
Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))

Proof of Theorem bpoly2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12408 . . 3 2 ∈ ℕ0
2 bpolyval 15966 . . 3 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
31, 2mpan 690 . 2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
4 2m1e1 12256 . . . . . . 7 (2 − 1) = 1
5 0p1e1 12252 . . . . . . 7 (0 + 1) = 1
64, 5eqtr4i 2759 . . . . . 6 (2 − 1) = (0 + 1)
76oveq2i 7366 . . . . 5 (0...(2 − 1)) = (0...(0 + 1))
87sumeq1i 15614 . . . 4 Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))
9 0nn0 12406 . . . . . . . . 9 0 ∈ ℕ0
10 nn0uz 12784 . . . . . . . . 9 0 = (ℤ‘0)
119, 10eleqtri 2831 . . . . . . . 8 0 ∈ (ℤ‘0)
1211a1i 11 . . . . . . 7 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
13 0z 12489 . . . . . . . . . . 11 0 ∈ ℤ
14 fzpr 13489 . . . . . . . . . . 11 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1513, 14ax-mp 5 . . . . . . . . . 10 (0...(0 + 1)) = {0, (0 + 1)}
1615eleq2i 2825 . . . . . . . . 9 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, (0 + 1)})
17 vex 3442 . . . . . . . . . 10 𝑘 ∈ V
1817elpr 4602 . . . . . . . . 9 (𝑘 ∈ {0, (0 + 1)} ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
1916, 18bitri 275 . . . . . . . 8 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
20 oveq2 7363 . . . . . . . . . . . . 13 (𝑘 = 0 → (2C𝑘) = (2C0))
21 bcn0 14227 . . . . . . . . . . . . . 14 (2 ∈ ℕ0 → (2C0) = 1)
221, 21ax-mp 5 . . . . . . . . . . . . 13 (2C0) = 1
2320, 22eqtrdi 2784 . . . . . . . . . . . 12 (𝑘 = 0 → (2C𝑘) = 1)
24 oveq1 7362 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
25 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2 − 𝑘) = (2 − 0))
2625oveq1d 7370 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2 − 𝑘) + 1) = ((2 − 0) + 1))
27 2cn 12210 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
2827subid1i 11443 . . . . . . . . . . . . . . . 16 (2 − 0) = 2
2928oveq1i 7365 . . . . . . . . . . . . . . 15 ((2 − 0) + 1) = (2 + 1)
30 df-3 12199 . . . . . . . . . . . . . . 15 3 = (2 + 1)
3129, 30eqtr4i 2759 . . . . . . . . . . . . . 14 ((2 − 0) + 1) = 3
3226, 31eqtrdi 2784 . . . . . . . . . . . . 13 (𝑘 = 0 → ((2 − 𝑘) + 1) = 3)
3324, 32oveq12d 7373 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 3))
3423, 33oveq12d 7373 . . . . . . . . . . 11 (𝑘 = 0 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
35 bpoly0 15967 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
3635oveq1d 7370 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 3) = (1 / 3))
3736oveq2d 7371 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 · (1 / 3)))
38 3cn 12216 . . . . . . . . . . . . . 14 3 ∈ ℂ
39 3ne0 12241 . . . . . . . . . . . . . 14 3 ≠ 0
4038, 39reccli 11861 . . . . . . . . . . . . 13 (1 / 3) ∈ ℂ
4140mullidi 11127 . . . . . . . . . . . 12 (1 · (1 / 3)) = (1 / 3)
4237, 41eqtrdi 2784 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 / 3))
4334, 42sylan9eqr 2790 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
4443, 40eqeltrdi 2841 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
455eqeq2i 2746 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
46 oveq2 7363 . . . . . . . . . . . . . 14 (𝑘 = 1 → (2C𝑘) = (2C1))
47 bcn1 14230 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (2C1) = 2)
481, 47ax-mp 5 . . . . . . . . . . . . . 14 (2C1) = 2
4946, 48eqtrdi 2784 . . . . . . . . . . . . 13 (𝑘 = 1 → (2C𝑘) = 2)
50 oveq1 7362 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
51 oveq2 7363 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2 − 𝑘) = (2 − 1))
5251oveq1d 7370 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2 − 𝑘) + 1) = ((2 − 1) + 1))
53 ax-1cn 11074 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
54 npcan 11379 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − 1) + 1) = 2)
5527, 53, 54mp2an 692 . . . . . . . . . . . . . . 15 ((2 − 1) + 1) = 2
5652, 55eqtrdi 2784 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((2 − 𝑘) + 1) = 2)
5750, 56oveq12d 7373 . . . . . . . . . . . . 13 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 2))
5849, 57oveq12d 7373 . . . . . . . . . . . 12 (𝑘 = 1 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
5945, 58sylbi 217 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
60 bpoly1 15968 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6160oveq1d 7370 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 2) = ((𝑋 − (1 / 2)) / 2))
6261oveq2d 7371 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (2 · ((𝑋 − (1 / 2)) / 2)))
63 halfcn 12345 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℂ
64 subcl 11369 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
6563, 64mpan2 691 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
66 2ne0 12239 . . . . . . . . . . . . . 14 2 ≠ 0
67 divcan2 11794 . . . . . . . . . . . . . 14 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6827, 66, 67mp3an23 1455 . . . . . . . . . . . . 13 ((𝑋 − (1 / 2)) ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6965, 68syl 17 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
7062, 69eqtrd 2768 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (𝑋 − (1 / 2)))
7159, 70sylan9eqr 2790 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7265adantr 480 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → (𝑋 − (1 / 2)) ∈ ℂ)
7371, 72eqeltrd 2833 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7444, 73jaodan 959 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = (0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7519, 74sylan2b 594 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7612, 75, 59fsump1 15673 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))))
7742, 40eqeltrdi 2841 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ)
7834fsum1 15664 . . . . . . . . 9 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
7913, 77, 78sylancr 587 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
8079, 42eqtrd 2768 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
8180, 70oveq12d 7373 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))) = ((1 / 3) + (𝑋 − (1 / 2))))
8276, 81eqtrd 2768 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = ((1 / 3) + (𝑋 − (1 / 2))))
83 addsub12 11383 . . . . . . 7 (((1 / 3) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8440, 63, 83mp3an13 1454 . . . . . 6 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8563, 40negsubdi2i 11457 . . . . . . . 8 -((1 / 2) − (1 / 3)) = ((1 / 3) − (1 / 2))
86 halfthird 12352 . . . . . . . . 9 ((1 / 2) − (1 / 3)) = (1 / 6)
8786negeqi 11363 . . . . . . . 8 -((1 / 2) − (1 / 3)) = -(1 / 6)
8885, 87eqtr3i 2758 . . . . . . 7 ((1 / 3) − (1 / 2)) = -(1 / 6)
8988oveq2i 7366 . . . . . 6 (𝑋 + ((1 / 3) − (1 / 2))) = (𝑋 + -(1 / 6))
9084, 89eqtrdi 2784 . . . . 5 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + -(1 / 6)))
91 6cn 12226 . . . . . . 7 6 ∈ ℂ
92 6re 12225 . . . . . . . 8 6 ∈ ℝ
93 6pos 12245 . . . . . . . 8 0 < 6
9492, 93gt0ne0ii 11663 . . . . . . 7 6 ≠ 0
9591, 94reccli 11861 . . . . . 6 (1 / 6) ∈ ℂ
96 negsub 11419 . . . . . 6 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9795, 96mpan2 691 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9882, 90, 973eqtrd 2772 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
998, 98eqtrid 2780 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
10099oveq2d 7371 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))) = ((𝑋↑2) − (𝑋 − (1 / 6))))
101 sqcl 14035 . . 3 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
102 subsub 11401 . . . 4 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
10395, 102mp3an3 1452 . . 3 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
104101, 103mpancom 688 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
1053, 100, 1043eqtrd 2772 1 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2930  {cpr 4579  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  cmin 11354  -cneg 11355   / cdiv 11784  2c2 12190  3c3 12191  6c6 12194  0cn0 12391  cz 12478  cuz 12742  ...cfz 13417  cexp 13978  Ccbc 14219  Σcsu 15603   BernPoly cbp 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-fz 13418  df-fzo 13565  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-sum 15604  df-bpoly 15964
This theorem is referenced by:  bpoly3  15975  bpoly4  15976
  Copyright terms: Public domain W3C validator