| Step | Hyp | Ref
| Expression |
| 1 | | 2nn0 12518 |
. . 3
⊢ 2 ∈
ℕ0 |
| 2 | | bpolyval 16065 |
. . 3
⊢ ((2
∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))))) |
| 3 | 1, 2 | mpan 690 |
. 2
⊢ (𝑋 ∈ ℂ → (2
BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 −
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))))) |
| 4 | | 2m1e1 12366 |
. . . . . . 7
⊢ (2
− 1) = 1 |
| 5 | | 0p1e1 12362 |
. . . . . . 7
⊢ (0 + 1) =
1 |
| 6 | 4, 5 | eqtr4i 2761 |
. . . . . 6
⊢ (2
− 1) = (0 + 1) |
| 7 | 6 | oveq2i 7416 |
. . . . 5
⊢ (0...(2
− 1)) = (0...(0 + 1)) |
| 8 | 7 | sumeq1i 15713 |
. . . 4
⊢
Σ𝑘 ∈
(0...(2 − 1))((2C𝑘)
· ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) |
| 9 | | 0nn0 12516 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 10 | | nn0uz 12894 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 11 | 9, 10 | eleqtri 2832 |
. . . . . . . 8
⊢ 0 ∈
(ℤ≥‘0) |
| 12 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → 0 ∈
(ℤ≥‘0)) |
| 13 | | 0z 12599 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
| 14 | | fzpr 13596 |
. . . . . . . . . . 11
⊢ (0 ∈
ℤ → (0...(0 + 1)) = {0, (0 + 1)}) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . . 10
⊢ (0...(0 +
1)) = {0, (0 + 1)} |
| 16 | 15 | eleq2i 2826 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(0 + 1)) ↔
𝑘 ∈ {0, (0 +
1)}) |
| 17 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑘 ∈ V |
| 18 | 17 | elpr 4626 |
. . . . . . . . 9
⊢ (𝑘 ∈ {0, (0 + 1)} ↔
(𝑘 = 0 ∨ 𝑘 = (0 + 1))) |
| 19 | 16, 18 | bitri 275 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(0 + 1)) ↔
(𝑘 = 0 ∨ 𝑘 = (0 + 1))) |
| 20 | | oveq2 7413 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (2C𝑘) = (2C0)) |
| 21 | | bcn0 14328 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℕ0 → (2C0) = 1) |
| 22 | 1, 21 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (2C0) =
1 |
| 23 | 20, 22 | eqtrdi 2786 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (2C𝑘) = 1) |
| 24 | | oveq1 7412 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) |
| 25 | | oveq2 7413 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (2 − 𝑘) = (2 −
0)) |
| 26 | 25 | oveq1d 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((2 − 𝑘) + 1) = ((2 − 0) +
1)) |
| 27 | | 2cn 12315 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℂ |
| 28 | 27 | subid1i 11555 |
. . . . . . . . . . . . . . . 16
⊢ (2
− 0) = 2 |
| 29 | 28 | oveq1i 7415 |
. . . . . . . . . . . . . . 15
⊢ ((2
− 0) + 1) = (2 + 1) |
| 30 | | df-3 12304 |
. . . . . . . . . . . . . . 15
⊢ 3 = (2 +
1) |
| 31 | 29, 30 | eqtr4i 2761 |
. . . . . . . . . . . . . 14
⊢ ((2
− 0) + 1) = 3 |
| 32 | 26, 31 | eqtrdi 2786 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → ((2 − 𝑘) + 1) = 3) |
| 33 | 24, 32 | oveq12d 7423 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 3)) |
| 34 | 23, 33 | oveq12d 7423 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3))) |
| 35 | | bpoly0 16066 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (0
BernPoly 𝑋) =
1) |
| 36 | 35 | oveq1d 7420 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((0
BernPoly 𝑋) / 3) = (1 /
3)) |
| 37 | 36 | oveq2d 7421 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
3)) = (1 · (1 / 3))) |
| 38 | | 3cn 12321 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℂ |
| 39 | | 3ne0 12346 |
. . . . . . . . . . . . . 14
⊢ 3 ≠
0 |
| 40 | 38, 39 | reccli 11971 |
. . . . . . . . . . . . 13
⊢ (1 / 3)
∈ ℂ |
| 41 | 40 | mullidi 11240 |
. . . . . . . . . . . 12
⊢ (1
· (1 / 3)) = (1 / 3) |
| 42 | 37, 41 | eqtrdi 2786 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
3)) = (1 / 3)) |
| 43 | 34, 42 | sylan9eqr 2792 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3)) |
| 44 | 43, 40 | eqeltrdi 2842 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) |
| 45 | 5 | eqeq2i 2748 |
. . . . . . . . . . . 12
⊢ (𝑘 = (0 + 1) ↔ 𝑘 = 1) |
| 46 | | oveq2 7413 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → (2C𝑘) = (2C1)) |
| 47 | | bcn1 14331 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
ℕ0 → (2C1) = 2) |
| 48 | 1, 47 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (2C1) =
2 |
| 49 | 46, 48 | eqtrdi 2786 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → (2C𝑘) = 2) |
| 50 | | oveq1 7412 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋)) |
| 51 | | oveq2 7413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → (2 − 𝑘) = (2 −
1)) |
| 52 | 51 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → ((2 − 𝑘) + 1) = ((2 − 1) +
1)) |
| 53 | | ax-1cn 11187 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
| 54 | | npcan 11491 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℂ ∧ 1 ∈ ℂ) → ((2 − 1) + 1) =
2) |
| 55 | 27, 53, 54 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢ ((2
− 1) + 1) = 2 |
| 56 | 52, 55 | eqtrdi 2786 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → ((2 − 𝑘) + 1) = 2) |
| 57 | 50, 56 | oveq12d 7423 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 2)) |
| 58 | 49, 57 | oveq12d 7423 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2))) |
| 59 | 45, 58 | sylbi 217 |
. . . . . . . . . . 11
⊢ (𝑘 = (0 + 1) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2))) |
| 60 | | bpoly1 16067 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (1
BernPoly 𝑋) = (𝑋 − (1 /
2))) |
| 61 | 60 | oveq1d 7420 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((1
BernPoly 𝑋) / 2) = ((𝑋 − (1 / 2)) /
2)) |
| 62 | 61 | oveq2d 7421 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (2
· ((1 BernPoly 𝑋) /
2)) = (2 · ((𝑋
− (1 / 2)) / 2))) |
| 63 | | halfcn 12455 |
. . . . . . . . . . . . . 14
⊢ (1 / 2)
∈ ℂ |
| 64 | | subcl 11481 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℂ ∧ (1 / 2)
∈ ℂ) → (𝑋
− (1 / 2)) ∈ ℂ) |
| 65 | 63, 64 | mpan2 691 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈
ℂ) |
| 66 | | 2ne0 12344 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
| 67 | | divcan2 11904 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 − (1 / 2)) ∈ ℂ
∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2))) |
| 68 | 27, 66, 67 | mp3an23 1455 |
. . . . . . . . . . . . 13
⊢ ((𝑋 − (1 / 2)) ∈ ℂ
→ (2 · ((𝑋
− (1 / 2)) / 2)) = (𝑋
− (1 / 2))) |
| 69 | 65, 68 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (2
· ((𝑋 − (1 /
2)) / 2)) = (𝑋 − (1 /
2))) |
| 70 | 62, 69 | eqtrd 2770 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (2
· ((1 BernPoly 𝑋) /
2)) = (𝑋 − (1 /
2))) |
| 71 | 59, 70 | sylan9eqr 2792 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 2))) |
| 72 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → (𝑋 − (1 / 2)) ∈
ℂ) |
| 73 | 71, 72 | eqeltrd 2834 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) |
| 74 | 44, 73 | jaodan 959 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = (0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) |
| 75 | 19, 74 | sylan2b 594 |
. . . . . . 7
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) →
((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) |
| 76 | 12, 75, 59 | fsump1 15772 |
. . . . . 6
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2)))) |
| 77 | 42, 40 | eqeltrdi 2842 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
3)) ∈ ℂ) |
| 78 | 34 | fsum1 15763 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3))) |
| 79 | 13, 77, 78 | sylancr 587 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...0)((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0
BernPoly 𝑋) /
3))) |
| 80 | 79, 42 | eqtrd 2770 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...0)((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 /
3)) |
| 81 | 80, 70 | oveq12d 7423 |
. . . . . 6
⊢ (𝑋 ∈ ℂ →
(Σ𝑘 ∈
(0...0)((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1
BernPoly 𝑋) / 2))) = ((1 /
3) + (𝑋 − (1 /
2)))) |
| 82 | 76, 81 | eqtrd 2770 |
. . . . 5
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = ((1 / 3) + (𝑋 − (1 / 2)))) |
| 83 | | addsub12 11495 |
. . . . . . 7
⊢ (((1 / 3)
∈ ℂ ∧ 𝑋
∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 /
2)))) |
| 84 | 40, 63, 83 | mp3an13 1454 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → ((1 / 3)
+ (𝑋 − (1 / 2))) =
(𝑋 + ((1 / 3) − (1 /
2)))) |
| 85 | 63, 40 | negsubdi2i 11569 |
. . . . . . . 8
⊢ -((1 / 2)
− (1 / 3)) = ((1 / 3) − (1 / 2)) |
| 86 | | halfthird 12462 |
. . . . . . . . 9
⊢ ((1 / 2)
− (1 / 3)) = (1 / 6) |
| 87 | 86 | negeqi 11475 |
. . . . . . . 8
⊢ -((1 / 2)
− (1 / 3)) = -(1 / 6) |
| 88 | 85, 87 | eqtr3i 2760 |
. . . . . . 7
⊢ ((1 / 3)
− (1 / 2)) = -(1 / 6) |
| 89 | 88 | oveq2i 7416 |
. . . . . 6
⊢ (𝑋 + ((1 / 3) − (1 / 2))) =
(𝑋 + -(1 /
6)) |
| 90 | 84, 89 | eqtrdi 2786 |
. . . . 5
⊢ (𝑋 ∈ ℂ → ((1 / 3)
+ (𝑋 − (1 / 2))) =
(𝑋 + -(1 /
6))) |
| 91 | | 6cn 12331 |
. . . . . . 7
⊢ 6 ∈
ℂ |
| 92 | | 6re 12330 |
. . . . . . . 8
⊢ 6 ∈
ℝ |
| 93 | | 6pos 12350 |
. . . . . . . 8
⊢ 0 <
6 |
| 94 | 92, 93 | gt0ne0ii 11773 |
. . . . . . 7
⊢ 6 ≠
0 |
| 95 | 91, 94 | reccli 11971 |
. . . . . 6
⊢ (1 / 6)
∈ ℂ |
| 96 | | negsub 11531 |
. . . . . 6
⊢ ((𝑋 ∈ ℂ ∧ (1 / 6)
∈ ℂ) → (𝑋 +
-(1 / 6)) = (𝑋 − (1 /
6))) |
| 97 | 95, 96 | mpan2 691 |
. . . . 5
⊢ (𝑋 ∈ ℂ → (𝑋 + -(1 / 6)) = (𝑋 − (1 /
6))) |
| 98 | 82, 90, 97 | 3eqtrd 2774 |
. . . 4
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6))) |
| 99 | 8, 98 | eqtrid 2782 |
. . 3
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(2
− 1))((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6))) |
| 100 | 99 | oveq2d 7421 |
. 2
⊢ (𝑋 ∈ ℂ → ((𝑋↑2) − Σ𝑘 ∈ (0...(2 −
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))) = ((𝑋↑2) − (𝑋 − (1 / 6)))) |
| 101 | | sqcl 14136 |
. . 3
⊢ (𝑋 ∈ ℂ → (𝑋↑2) ∈
ℂ) |
| 102 | | subsub 11513 |
. . . 4
⊢ (((𝑋↑2) ∈ ℂ ∧
𝑋 ∈ ℂ ∧ (1 /
6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6))) |
| 103 | 95, 102 | mp3an3 1452 |
. . 3
⊢ (((𝑋↑2) ∈ ℂ ∧
𝑋 ∈ ℂ) →
((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6))) |
| 104 | 101, 103 | mpancom 688 |
. 2
⊢ (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6))) |
| 105 | 3, 100, 104 | 3eqtrd 2774 |
1
⊢ (𝑋 ∈ ℂ → (2
BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) |