Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly2 Structured version   Visualization version   GIF version

Theorem bpoly2 15413
 Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))

Proof of Theorem bpoly2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 11913 . . 3 2 ∈ ℕ0
2 bpolyval 15405 . . 3 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
31, 2mpan 689 . 2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
4 2m1e1 11762 . . . . . . 7 (2 − 1) = 1
5 0p1e1 11758 . . . . . . 7 (0 + 1) = 1
64, 5eqtr4i 2850 . . . . . 6 (2 − 1) = (0 + 1)
76oveq2i 7162 . . . . 5 (0...(2 − 1)) = (0...(0 + 1))
87sumeq1i 15057 . . . 4 Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))
9 0nn0 11911 . . . . . . . . 9 0 ∈ ℕ0
10 nn0uz 12279 . . . . . . . . 9 0 = (ℤ‘0)
119, 10eleqtri 2914 . . . . . . . 8 0 ∈ (ℤ‘0)
1211a1i 11 . . . . . . 7 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
13 0z 11991 . . . . . . . . . . 11 0 ∈ ℤ
14 fzpr 12968 . . . . . . . . . . 11 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1513, 14ax-mp 5 . . . . . . . . . 10 (0...(0 + 1)) = {0, (0 + 1)}
1615eleq2i 2907 . . . . . . . . 9 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, (0 + 1)})
17 vex 3483 . . . . . . . . . 10 𝑘 ∈ V
1817elpr 4573 . . . . . . . . 9 (𝑘 ∈ {0, (0 + 1)} ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
1916, 18bitri 278 . . . . . . . 8 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
20 oveq2 7159 . . . . . . . . . . . . 13 (𝑘 = 0 → (2C𝑘) = (2C0))
21 bcn0 13677 . . . . . . . . . . . . . 14 (2 ∈ ℕ0 → (2C0) = 1)
221, 21ax-mp 5 . . . . . . . . . . . . 13 (2C0) = 1
2320, 22syl6eq 2875 . . . . . . . . . . . 12 (𝑘 = 0 → (2C𝑘) = 1)
24 oveq1 7158 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
25 oveq2 7159 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2 − 𝑘) = (2 − 0))
2625oveq1d 7166 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2 − 𝑘) + 1) = ((2 − 0) + 1))
27 2cn 11711 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
2827subid1i 10958 . . . . . . . . . . . . . . . 16 (2 − 0) = 2
2928oveq1i 7161 . . . . . . . . . . . . . . 15 ((2 − 0) + 1) = (2 + 1)
30 df-3 11700 . . . . . . . . . . . . . . 15 3 = (2 + 1)
3129, 30eqtr4i 2850 . . . . . . . . . . . . . 14 ((2 − 0) + 1) = 3
3226, 31syl6eq 2875 . . . . . . . . . . . . 13 (𝑘 = 0 → ((2 − 𝑘) + 1) = 3)
3324, 32oveq12d 7169 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 3))
3423, 33oveq12d 7169 . . . . . . . . . . 11 (𝑘 = 0 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
35 bpoly0 15406 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
3635oveq1d 7166 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 3) = (1 / 3))
3736oveq2d 7167 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 · (1 / 3)))
38 3cn 11717 . . . . . . . . . . . . . 14 3 ∈ ℂ
39 3ne0 11742 . . . . . . . . . . . . . 14 3 ≠ 0
4038, 39reccli 11370 . . . . . . . . . . . . 13 (1 / 3) ∈ ℂ
4140mulid2i 10646 . . . . . . . . . . . 12 (1 · (1 / 3)) = (1 / 3)
4237, 41syl6eq 2875 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 / 3))
4334, 42sylan9eqr 2881 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
4443, 40eqeltrdi 2924 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
455eqeq2i 2837 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
46 oveq2 7159 . . . . . . . . . . . . . 14 (𝑘 = 1 → (2C𝑘) = (2C1))
47 bcn1 13680 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (2C1) = 2)
481, 47ax-mp 5 . . . . . . . . . . . . . 14 (2C1) = 2
4946, 48syl6eq 2875 . . . . . . . . . . . . 13 (𝑘 = 1 → (2C𝑘) = 2)
50 oveq1 7158 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
51 oveq2 7159 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2 − 𝑘) = (2 − 1))
5251oveq1d 7166 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2 − 𝑘) + 1) = ((2 − 1) + 1))
53 ax-1cn 10595 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
54 npcan 10895 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − 1) + 1) = 2)
5527, 53, 54mp2an 691 . . . . . . . . . . . . . . 15 ((2 − 1) + 1) = 2
5652, 55syl6eq 2875 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((2 − 𝑘) + 1) = 2)
5750, 56oveq12d 7169 . . . . . . . . . . . . 13 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 2))
5849, 57oveq12d 7169 . . . . . . . . . . . 12 (𝑘 = 1 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
5945, 58sylbi 220 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
60 bpoly1 15407 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6160oveq1d 7166 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 2) = ((𝑋 − (1 / 2)) / 2))
6261oveq2d 7167 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (2 · ((𝑋 − (1 / 2)) / 2)))
63 halfcn 11851 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℂ
64 subcl 10885 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
6563, 64mpan2 690 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
66 2ne0 11740 . . . . . . . . . . . . . 14 2 ≠ 0
67 divcan2 11306 . . . . . . . . . . . . . 14 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6827, 66, 67mp3an23 1450 . . . . . . . . . . . . 13 ((𝑋 − (1 / 2)) ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6965, 68syl 17 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
7062, 69eqtrd 2859 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (𝑋 − (1 / 2)))
7159, 70sylan9eqr 2881 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7265adantr 484 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → (𝑋 − (1 / 2)) ∈ ℂ)
7371, 72eqeltrd 2916 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7444, 73jaodan 955 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = (0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7519, 74sylan2b 596 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7612, 75, 59fsump1 15113 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))))
7742, 40eqeltrdi 2924 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ)
7834fsum1 15104 . . . . . . . . 9 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
7913, 77, 78sylancr 590 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
8079, 42eqtrd 2859 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
8180, 70oveq12d 7169 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))) = ((1 / 3) + (𝑋 − (1 / 2))))
8276, 81eqtrd 2859 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = ((1 / 3) + (𝑋 − (1 / 2))))
83 addsub12 10899 . . . . . . 7 (((1 / 3) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8440, 63, 83mp3an13 1449 . . . . . 6 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8563, 40negsubdi2i 10972 . . . . . . . 8 -((1 / 2) − (1 / 3)) = ((1 / 3) − (1 / 2))
86 halfthird 12240 . . . . . . . . 9 ((1 / 2) − (1 / 3)) = (1 / 6)
8786negeqi 10879 . . . . . . . 8 -((1 / 2) − (1 / 3)) = -(1 / 6)
8885, 87eqtr3i 2849 . . . . . . 7 ((1 / 3) − (1 / 2)) = -(1 / 6)
8988oveq2i 7162 . . . . . 6 (𝑋 + ((1 / 3) − (1 / 2))) = (𝑋 + -(1 / 6))
9084, 89syl6eq 2875 . . . . 5 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + -(1 / 6)))
91 6cn 11727 . . . . . . 7 6 ∈ ℂ
92 6re 11726 . . . . . . . 8 6 ∈ ℝ
93 6pos 11746 . . . . . . . 8 0 < 6
9492, 93gt0ne0ii 11176 . . . . . . 7 6 ≠ 0
9591, 94reccli 11370 . . . . . 6 (1 / 6) ∈ ℂ
96 negsub 10934 . . . . . 6 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9795, 96mpan2 690 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9882, 90, 973eqtrd 2863 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
998, 98syl5eq 2871 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
10099oveq2d 7167 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))) = ((𝑋↑2) − (𝑋 − (1 / 6))))
101 sqcl 13491 . . 3 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
102 subsub 10916 . . . 4 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
10395, 102mp3an3 1447 . . 3 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
104101, 103mpancom 687 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
1053, 100, 1043eqtrd 2863 1 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  {cpr 4552  ‘cfv 6345  (class class class)co 7151  ℂcc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   − cmin 10870  -cneg 10871   / cdiv 11297  2c2 11691  3c3 11692  6c6 11695  ℕ0cn0 11896  ℤcz 11980  ℤ≥cuz 12242  ...cfz 12896  ↑cexp 13436  Ccbc 13669  Σcsu 15044   BernPoly cbp 15402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-inf2 9103  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12897  df-fzo 13040  df-seq 13376  df-exp 13437  df-fac 13641  df-bc 13670  df-hash 13698  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-bpoly 15403 This theorem is referenced by:  bpoly3  15414  bpoly4  15415
 Copyright terms: Public domain W3C validator