MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly2 Structured version   Visualization version   GIF version

Theorem bpoly2 15767
Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))

Proof of Theorem bpoly2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12250 . . 3 2 ∈ ℕ0
2 bpolyval 15759 . . 3 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
31, 2mpan 687 . 2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
4 2m1e1 12099 . . . . . . 7 (2 − 1) = 1
5 0p1e1 12095 . . . . . . 7 (0 + 1) = 1
64, 5eqtr4i 2769 . . . . . 6 (2 − 1) = (0 + 1)
76oveq2i 7286 . . . . 5 (0...(2 − 1)) = (0...(0 + 1))
87sumeq1i 15410 . . . 4 Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))
9 0nn0 12248 . . . . . . . . 9 0 ∈ ℕ0
10 nn0uz 12620 . . . . . . . . 9 0 = (ℤ‘0)
119, 10eleqtri 2837 . . . . . . . 8 0 ∈ (ℤ‘0)
1211a1i 11 . . . . . . 7 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
13 0z 12330 . . . . . . . . . . 11 0 ∈ ℤ
14 fzpr 13311 . . . . . . . . . . 11 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1513, 14ax-mp 5 . . . . . . . . . 10 (0...(0 + 1)) = {0, (0 + 1)}
1615eleq2i 2830 . . . . . . . . 9 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, (0 + 1)})
17 vex 3436 . . . . . . . . . 10 𝑘 ∈ V
1817elpr 4584 . . . . . . . . 9 (𝑘 ∈ {0, (0 + 1)} ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
1916, 18bitri 274 . . . . . . . 8 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
20 oveq2 7283 . . . . . . . . . . . . 13 (𝑘 = 0 → (2C𝑘) = (2C0))
21 bcn0 14024 . . . . . . . . . . . . . 14 (2 ∈ ℕ0 → (2C0) = 1)
221, 21ax-mp 5 . . . . . . . . . . . . 13 (2C0) = 1
2320, 22eqtrdi 2794 . . . . . . . . . . . 12 (𝑘 = 0 → (2C𝑘) = 1)
24 oveq1 7282 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
25 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2 − 𝑘) = (2 − 0))
2625oveq1d 7290 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2 − 𝑘) + 1) = ((2 − 0) + 1))
27 2cn 12048 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
2827subid1i 11293 . . . . . . . . . . . . . . . 16 (2 − 0) = 2
2928oveq1i 7285 . . . . . . . . . . . . . . 15 ((2 − 0) + 1) = (2 + 1)
30 df-3 12037 . . . . . . . . . . . . . . 15 3 = (2 + 1)
3129, 30eqtr4i 2769 . . . . . . . . . . . . . 14 ((2 − 0) + 1) = 3
3226, 31eqtrdi 2794 . . . . . . . . . . . . 13 (𝑘 = 0 → ((2 − 𝑘) + 1) = 3)
3324, 32oveq12d 7293 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 3))
3423, 33oveq12d 7293 . . . . . . . . . . 11 (𝑘 = 0 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
35 bpoly0 15760 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
3635oveq1d 7290 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 3) = (1 / 3))
3736oveq2d 7291 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 · (1 / 3)))
38 3cn 12054 . . . . . . . . . . . . . 14 3 ∈ ℂ
39 3ne0 12079 . . . . . . . . . . . . . 14 3 ≠ 0
4038, 39reccli 11705 . . . . . . . . . . . . 13 (1 / 3) ∈ ℂ
4140mulid2i 10980 . . . . . . . . . . . 12 (1 · (1 / 3)) = (1 / 3)
4237, 41eqtrdi 2794 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 / 3))
4334, 42sylan9eqr 2800 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
4443, 40eqeltrdi 2847 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
455eqeq2i 2751 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
46 oveq2 7283 . . . . . . . . . . . . . 14 (𝑘 = 1 → (2C𝑘) = (2C1))
47 bcn1 14027 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (2C1) = 2)
481, 47ax-mp 5 . . . . . . . . . . . . . 14 (2C1) = 2
4946, 48eqtrdi 2794 . . . . . . . . . . . . 13 (𝑘 = 1 → (2C𝑘) = 2)
50 oveq1 7282 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
51 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2 − 𝑘) = (2 − 1))
5251oveq1d 7290 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2 − 𝑘) + 1) = ((2 − 1) + 1))
53 ax-1cn 10929 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
54 npcan 11230 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − 1) + 1) = 2)
5527, 53, 54mp2an 689 . . . . . . . . . . . . . . 15 ((2 − 1) + 1) = 2
5652, 55eqtrdi 2794 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((2 − 𝑘) + 1) = 2)
5750, 56oveq12d 7293 . . . . . . . . . . . . 13 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 2))
5849, 57oveq12d 7293 . . . . . . . . . . . 12 (𝑘 = 1 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
5945, 58sylbi 216 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
60 bpoly1 15761 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6160oveq1d 7290 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 2) = ((𝑋 − (1 / 2)) / 2))
6261oveq2d 7291 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (2 · ((𝑋 − (1 / 2)) / 2)))
63 halfcn 12188 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℂ
64 subcl 11220 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
6563, 64mpan2 688 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
66 2ne0 12077 . . . . . . . . . . . . . 14 2 ≠ 0
67 divcan2 11641 . . . . . . . . . . . . . 14 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6827, 66, 67mp3an23 1452 . . . . . . . . . . . . 13 ((𝑋 − (1 / 2)) ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6965, 68syl 17 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
7062, 69eqtrd 2778 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (𝑋 − (1 / 2)))
7159, 70sylan9eqr 2800 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7265adantr 481 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → (𝑋 − (1 / 2)) ∈ ℂ)
7371, 72eqeltrd 2839 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7444, 73jaodan 955 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = (0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7519, 74sylan2b 594 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7612, 75, 59fsump1 15468 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))))
7742, 40eqeltrdi 2847 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ)
7834fsum1 15459 . . . . . . . . 9 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
7913, 77, 78sylancr 587 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
8079, 42eqtrd 2778 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
8180, 70oveq12d 7293 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))) = ((1 / 3) + (𝑋 − (1 / 2))))
8276, 81eqtrd 2778 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = ((1 / 3) + (𝑋 − (1 / 2))))
83 addsub12 11234 . . . . . . 7 (((1 / 3) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8440, 63, 83mp3an13 1451 . . . . . 6 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8563, 40negsubdi2i 11307 . . . . . . . 8 -((1 / 2) − (1 / 3)) = ((1 / 3) − (1 / 2))
86 halfthird 12580 . . . . . . . . 9 ((1 / 2) − (1 / 3)) = (1 / 6)
8786negeqi 11214 . . . . . . . 8 -((1 / 2) − (1 / 3)) = -(1 / 6)
8885, 87eqtr3i 2768 . . . . . . 7 ((1 / 3) − (1 / 2)) = -(1 / 6)
8988oveq2i 7286 . . . . . 6 (𝑋 + ((1 / 3) − (1 / 2))) = (𝑋 + -(1 / 6))
9084, 89eqtrdi 2794 . . . . 5 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + -(1 / 6)))
91 6cn 12064 . . . . . . 7 6 ∈ ℂ
92 6re 12063 . . . . . . . 8 6 ∈ ℝ
93 6pos 12083 . . . . . . . 8 0 < 6
9492, 93gt0ne0ii 11511 . . . . . . 7 6 ≠ 0
9591, 94reccli 11705 . . . . . 6 (1 / 6) ∈ ℂ
96 negsub 11269 . . . . . 6 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9795, 96mpan2 688 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9882, 90, 973eqtrd 2782 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
998, 98eqtrid 2790 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
10099oveq2d 7291 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))) = ((𝑋↑2) − (𝑋 − (1 / 6))))
101 sqcl 13838 . . 3 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
102 subsub 11251 . . . 4 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
10395, 102mp3an3 1449 . . 3 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
104101, 103mpancom 685 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
1053, 100, 1043eqtrd 2782 1 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  {cpr 4563  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  3c3 12029  6c6 12032  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cexp 13782  Ccbc 14016  Σcsu 15397   BernPoly cbp 15756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-bpoly 15757
This theorem is referenced by:  bpoly3  15768  bpoly4  15769
  Copyright terms: Public domain W3C validator