| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2nn0 12543 | . . 3
⊢ 2 ∈
ℕ0 | 
| 2 |  | bpolyval 16085 | . . 3
⊢ ((2
∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))))) | 
| 3 | 1, 2 | mpan 690 | . 2
⊢ (𝑋 ∈ ℂ → (2
BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 −
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))))) | 
| 4 |  | 2m1e1 12392 | . . . . . . 7
⊢ (2
− 1) = 1 | 
| 5 |  | 0p1e1 12388 | . . . . . . 7
⊢ (0 + 1) =
1 | 
| 6 | 4, 5 | eqtr4i 2768 | . . . . . 6
⊢ (2
− 1) = (0 + 1) | 
| 7 | 6 | oveq2i 7442 | . . . . 5
⊢ (0...(2
− 1)) = (0...(0 + 1)) | 
| 8 | 7 | sumeq1i 15733 | . . . 4
⊢
Σ𝑘 ∈
(0...(2 − 1))((2C𝑘)
· ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) | 
| 9 |  | 0nn0 12541 | . . . . . . . . 9
⊢ 0 ∈
ℕ0 | 
| 10 |  | nn0uz 12920 | . . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) | 
| 11 | 9, 10 | eleqtri 2839 | . . . . . . . 8
⊢ 0 ∈
(ℤ≥‘0) | 
| 12 | 11 | a1i 11 | . . . . . . 7
⊢ (𝑋 ∈ ℂ → 0 ∈
(ℤ≥‘0)) | 
| 13 |  | 0z 12624 | . . . . . . . . . . 11
⊢ 0 ∈
ℤ | 
| 14 |  | fzpr 13619 | . . . . . . . . . . 11
⊢ (0 ∈
ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | 
| 15 | 13, 14 | ax-mp 5 | . . . . . . . . . 10
⊢ (0...(0 +
1)) = {0, (0 + 1)} | 
| 16 | 15 | eleq2i 2833 | . . . . . . . . 9
⊢ (𝑘 ∈ (0...(0 + 1)) ↔
𝑘 ∈ {0, (0 +
1)}) | 
| 17 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑘 ∈ V | 
| 18 | 17 | elpr 4650 | . . . . . . . . 9
⊢ (𝑘 ∈ {0, (0 + 1)} ↔
(𝑘 = 0 ∨ 𝑘 = (0 + 1))) | 
| 19 | 16, 18 | bitri 275 | . . . . . . . 8
⊢ (𝑘 ∈ (0...(0 + 1)) ↔
(𝑘 = 0 ∨ 𝑘 = (0 + 1))) | 
| 20 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (2C𝑘) = (2C0)) | 
| 21 |  | bcn0 14349 | . . . . . . . . . . . . . 14
⊢ (2 ∈
ℕ0 → (2C0) = 1) | 
| 22 | 1, 21 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ (2C0) =
1 | 
| 23 | 20, 22 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (𝑘 = 0 → (2C𝑘) = 1) | 
| 24 |  | oveq1 7438 | . . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) | 
| 25 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (2 − 𝑘) = (2 −
0)) | 
| 26 | 25 | oveq1d 7446 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((2 − 𝑘) + 1) = ((2 − 0) +
1)) | 
| 27 |  | 2cn 12341 | . . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℂ | 
| 28 | 27 | subid1i 11581 | . . . . . . . . . . . . . . . 16
⊢ (2
− 0) = 2 | 
| 29 | 28 | oveq1i 7441 | . . . . . . . . . . . . . . 15
⊢ ((2
− 0) + 1) = (2 + 1) | 
| 30 |  | df-3 12330 | . . . . . . . . . . . . . . 15
⊢ 3 = (2 +
1) | 
| 31 | 29, 30 | eqtr4i 2768 | . . . . . . . . . . . . . 14
⊢ ((2
− 0) + 1) = 3 | 
| 32 | 26, 31 | eqtrdi 2793 | . . . . . . . . . . . . 13
⊢ (𝑘 = 0 → ((2 − 𝑘) + 1) = 3) | 
| 33 | 24, 32 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 3)) | 
| 34 | 23, 33 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (𝑘 = 0 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3))) | 
| 35 |  | bpoly0 16086 | . . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (0
BernPoly 𝑋) =
1) | 
| 36 | 35 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((0
BernPoly 𝑋) / 3) = (1 /
3)) | 
| 37 | 36 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
3)) = (1 · (1 / 3))) | 
| 38 |  | 3cn 12347 | . . . . . . . . . . . . . 14
⊢ 3 ∈
ℂ | 
| 39 |  | 3ne0 12372 | . . . . . . . . . . . . . 14
⊢ 3 ≠
0 | 
| 40 | 38, 39 | reccli 11997 | . . . . . . . . . . . . 13
⊢ (1 / 3)
∈ ℂ | 
| 41 | 40 | mullidi 11266 | . . . . . . . . . . . 12
⊢ (1
· (1 / 3)) = (1 / 3) | 
| 42 | 37, 41 | eqtrdi 2793 | . . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
3)) = (1 / 3)) | 
| 43 | 34, 42 | sylan9eqr 2799 | . . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3)) | 
| 44 | 43, 40 | eqeltrdi 2849 | . . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) | 
| 45 | 5 | eqeq2i 2750 | . . . . . . . . . . . 12
⊢ (𝑘 = (0 + 1) ↔ 𝑘 = 1) | 
| 46 |  | oveq2 7439 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → (2C𝑘) = (2C1)) | 
| 47 |  | bcn1 14352 | . . . . . . . . . . . . . . 15
⊢ (2 ∈
ℕ0 → (2C1) = 2) | 
| 48 | 1, 47 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ (2C1) =
2 | 
| 49 | 46, 48 | eqtrdi 2793 | . . . . . . . . . . . . 13
⊢ (𝑘 = 1 → (2C𝑘) = 2) | 
| 50 |  | oveq1 7438 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋)) | 
| 51 |  | oveq2 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → (2 − 𝑘) = (2 −
1)) | 
| 52 | 51 | oveq1d 7446 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → ((2 − 𝑘) + 1) = ((2 − 1) +
1)) | 
| 53 |  | ax-1cn 11213 | . . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ | 
| 54 |  | npcan 11517 | . . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℂ ∧ 1 ∈ ℂ) → ((2 − 1) + 1) =
2) | 
| 55 | 27, 53, 54 | mp2an 692 | . . . . . . . . . . . . . . 15
⊢ ((2
− 1) + 1) = 2 | 
| 56 | 52, 55 | eqtrdi 2793 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → ((2 − 𝑘) + 1) = 2) | 
| 57 | 50, 56 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 2)) | 
| 58 | 49, 57 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑘 = 1 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2))) | 
| 59 | 45, 58 | sylbi 217 | . . . . . . . . . . 11
⊢ (𝑘 = (0 + 1) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2))) | 
| 60 |  | bpoly1 16087 | . . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (1
BernPoly 𝑋) = (𝑋 − (1 /
2))) | 
| 61 | 60 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((1
BernPoly 𝑋) / 2) = ((𝑋 − (1 / 2)) /
2)) | 
| 62 | 61 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (2
· ((1 BernPoly 𝑋) /
2)) = (2 · ((𝑋
− (1 / 2)) / 2))) | 
| 63 |  | halfcn 12481 | . . . . . . . . . . . . . 14
⊢ (1 / 2)
∈ ℂ | 
| 64 |  | subcl 11507 | . . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℂ ∧ (1 / 2)
∈ ℂ) → (𝑋
− (1 / 2)) ∈ ℂ) | 
| 65 | 63, 64 | mpan2 691 | . . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈
ℂ) | 
| 66 |  | 2ne0 12370 | . . . . . . . . . . . . . 14
⊢ 2 ≠
0 | 
| 67 |  | divcan2 11930 | . . . . . . . . . . . . . 14
⊢ (((𝑋 − (1 / 2)) ∈ ℂ
∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2))) | 
| 68 | 27, 66, 67 | mp3an23 1455 | . . . . . . . . . . . . 13
⊢ ((𝑋 − (1 / 2)) ∈ ℂ
→ (2 · ((𝑋
− (1 / 2)) / 2)) = (𝑋
− (1 / 2))) | 
| 69 | 65, 68 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (2
· ((𝑋 − (1 /
2)) / 2)) = (𝑋 − (1 /
2))) | 
| 70 | 62, 69 | eqtrd 2777 | . . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (2
· ((1 BernPoly 𝑋) /
2)) = (𝑋 − (1 /
2))) | 
| 71 | 59, 70 | sylan9eqr 2799 | . . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 2))) | 
| 72 | 65 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → (𝑋 − (1 / 2)) ∈
ℂ) | 
| 73 | 71, 72 | eqeltrd 2841 | . . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) | 
| 74 | 44, 73 | jaodan 960 | . . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = (0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) | 
| 75 | 19, 74 | sylan2b 594 | . . . . . . 7
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) →
((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ) | 
| 76 | 12, 75, 59 | fsump1 15792 | . . . . . 6
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2)))) | 
| 77 | 42, 40 | eqeltrdi 2849 | . . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
3)) ∈ ℂ) | 
| 78 | 34 | fsum1 15783 | . . . . . . . . 9
⊢ ((0
∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3))) | 
| 79 | 13, 77, 78 | sylancr 587 | . . . . . . . 8
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...0)((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0
BernPoly 𝑋) /
3))) | 
| 80 | 79, 42 | eqtrd 2777 | . . . . . . 7
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...0)((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 /
3)) | 
| 81 | 80, 70 | oveq12d 7449 | . . . . . 6
⊢ (𝑋 ∈ ℂ →
(Σ𝑘 ∈
(0...0)((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1
BernPoly 𝑋) / 2))) = ((1 /
3) + (𝑋 − (1 /
2)))) | 
| 82 | 76, 81 | eqtrd 2777 | . . . . 5
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = ((1 / 3) + (𝑋 − (1 / 2)))) | 
| 83 |  | addsub12 11521 | . . . . . . 7
⊢ (((1 / 3)
∈ ℂ ∧ 𝑋
∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 /
2)))) | 
| 84 | 40, 63, 83 | mp3an13 1454 | . . . . . 6
⊢ (𝑋 ∈ ℂ → ((1 / 3)
+ (𝑋 − (1 / 2))) =
(𝑋 + ((1 / 3) − (1 /
2)))) | 
| 85 | 63, 40 | negsubdi2i 11595 | . . . . . . . 8
⊢ -((1 / 2)
− (1 / 3)) = ((1 / 3) − (1 / 2)) | 
| 86 |  | halfthird 12876 | . . . . . . . . 9
⊢ ((1 / 2)
− (1 / 3)) = (1 / 6) | 
| 87 | 86 | negeqi 11501 | . . . . . . . 8
⊢ -((1 / 2)
− (1 / 3)) = -(1 / 6) | 
| 88 | 85, 87 | eqtr3i 2767 | . . . . . . 7
⊢ ((1 / 3)
− (1 / 2)) = -(1 / 6) | 
| 89 | 88 | oveq2i 7442 | . . . . . 6
⊢ (𝑋 + ((1 / 3) − (1 / 2))) =
(𝑋 + -(1 /
6)) | 
| 90 | 84, 89 | eqtrdi 2793 | . . . . 5
⊢ (𝑋 ∈ ℂ → ((1 / 3)
+ (𝑋 − (1 / 2))) =
(𝑋 + -(1 /
6))) | 
| 91 |  | 6cn 12357 | . . . . . . 7
⊢ 6 ∈
ℂ | 
| 92 |  | 6re 12356 | . . . . . . . 8
⊢ 6 ∈
ℝ | 
| 93 |  | 6pos 12376 | . . . . . . . 8
⊢ 0 <
6 | 
| 94 | 92, 93 | gt0ne0ii 11799 | . . . . . . 7
⊢ 6 ≠
0 | 
| 95 | 91, 94 | reccli 11997 | . . . . . 6
⊢ (1 / 6)
∈ ℂ | 
| 96 |  | negsub 11557 | . . . . . 6
⊢ ((𝑋 ∈ ℂ ∧ (1 / 6)
∈ ℂ) → (𝑋 +
-(1 / 6)) = (𝑋 − (1 /
6))) | 
| 97 | 95, 96 | mpan2 691 | . . . . 5
⊢ (𝑋 ∈ ℂ → (𝑋 + -(1 / 6)) = (𝑋 − (1 /
6))) | 
| 98 | 82, 90, 97 | 3eqtrd 2781 | . . . 4
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6))) | 
| 99 | 8, 98 | eqtrid 2789 | . . 3
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(2
− 1))((2C𝑘) ·
((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6))) | 
| 100 | 99 | oveq2d 7447 | . 2
⊢ (𝑋 ∈ ℂ → ((𝑋↑2) − Σ𝑘 ∈ (0...(2 −
1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))) = ((𝑋↑2) − (𝑋 − (1 / 6)))) | 
| 101 |  | sqcl 14158 | . . 3
⊢ (𝑋 ∈ ℂ → (𝑋↑2) ∈
ℂ) | 
| 102 |  | subsub 11539 | . . . 4
⊢ (((𝑋↑2) ∈ ℂ ∧
𝑋 ∈ ℂ ∧ (1 /
6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6))) | 
| 103 | 95, 102 | mp3an3 1452 | . . 3
⊢ (((𝑋↑2) ∈ ℂ ∧
𝑋 ∈ ℂ) →
((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6))) | 
| 104 | 101, 103 | mpancom 688 | . 2
⊢ (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6))) | 
| 105 | 3, 100, 104 | 3eqtrd 2781 | 1
⊢ (𝑋 ∈ ℂ → (2
BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) |