MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly2 Structured version   Visualization version   GIF version

Theorem bpoly2 16105
Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))

Proof of Theorem bpoly2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12570 . . 3 2 ∈ ℕ0
2 bpolyval 16097 . . 3 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
31, 2mpan 689 . 2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
4 2m1e1 12419 . . . . . . 7 (2 − 1) = 1
5 0p1e1 12415 . . . . . . 7 (0 + 1) = 1
64, 5eqtr4i 2771 . . . . . 6 (2 − 1) = (0 + 1)
76oveq2i 7459 . . . . 5 (0...(2 − 1)) = (0...(0 + 1))
87sumeq1i 15745 . . . 4 Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))
9 0nn0 12568 . . . . . . . . 9 0 ∈ ℕ0
10 nn0uz 12945 . . . . . . . . 9 0 = (ℤ‘0)
119, 10eleqtri 2842 . . . . . . . 8 0 ∈ (ℤ‘0)
1211a1i 11 . . . . . . 7 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
13 0z 12650 . . . . . . . . . . 11 0 ∈ ℤ
14 fzpr 13639 . . . . . . . . . . 11 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1513, 14ax-mp 5 . . . . . . . . . 10 (0...(0 + 1)) = {0, (0 + 1)}
1615eleq2i 2836 . . . . . . . . 9 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, (0 + 1)})
17 vex 3492 . . . . . . . . . 10 𝑘 ∈ V
1817elpr 4672 . . . . . . . . 9 (𝑘 ∈ {0, (0 + 1)} ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
1916, 18bitri 275 . . . . . . . 8 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
20 oveq2 7456 . . . . . . . . . . . . 13 (𝑘 = 0 → (2C𝑘) = (2C0))
21 bcn0 14359 . . . . . . . . . . . . . 14 (2 ∈ ℕ0 → (2C0) = 1)
221, 21ax-mp 5 . . . . . . . . . . . . 13 (2C0) = 1
2320, 22eqtrdi 2796 . . . . . . . . . . . 12 (𝑘 = 0 → (2C𝑘) = 1)
24 oveq1 7455 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
25 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2 − 𝑘) = (2 − 0))
2625oveq1d 7463 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2 − 𝑘) + 1) = ((2 − 0) + 1))
27 2cn 12368 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
2827subid1i 11608 . . . . . . . . . . . . . . . 16 (2 − 0) = 2
2928oveq1i 7458 . . . . . . . . . . . . . . 15 ((2 − 0) + 1) = (2 + 1)
30 df-3 12357 . . . . . . . . . . . . . . 15 3 = (2 + 1)
3129, 30eqtr4i 2771 . . . . . . . . . . . . . 14 ((2 − 0) + 1) = 3
3226, 31eqtrdi 2796 . . . . . . . . . . . . 13 (𝑘 = 0 → ((2 − 𝑘) + 1) = 3)
3324, 32oveq12d 7466 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 3))
3423, 33oveq12d 7466 . . . . . . . . . . 11 (𝑘 = 0 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
35 bpoly0 16098 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
3635oveq1d 7463 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 3) = (1 / 3))
3736oveq2d 7464 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 · (1 / 3)))
38 3cn 12374 . . . . . . . . . . . . . 14 3 ∈ ℂ
39 3ne0 12399 . . . . . . . . . . . . . 14 3 ≠ 0
4038, 39reccli 12024 . . . . . . . . . . . . 13 (1 / 3) ∈ ℂ
4140mullidi 11295 . . . . . . . . . . . 12 (1 · (1 / 3)) = (1 / 3)
4237, 41eqtrdi 2796 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 / 3))
4334, 42sylan9eqr 2802 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
4443, 40eqeltrdi 2852 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
455eqeq2i 2753 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
46 oveq2 7456 . . . . . . . . . . . . . 14 (𝑘 = 1 → (2C𝑘) = (2C1))
47 bcn1 14362 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (2C1) = 2)
481, 47ax-mp 5 . . . . . . . . . . . . . 14 (2C1) = 2
4946, 48eqtrdi 2796 . . . . . . . . . . . . 13 (𝑘 = 1 → (2C𝑘) = 2)
50 oveq1 7455 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
51 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2 − 𝑘) = (2 − 1))
5251oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2 − 𝑘) + 1) = ((2 − 1) + 1))
53 ax-1cn 11242 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
54 npcan 11545 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − 1) + 1) = 2)
5527, 53, 54mp2an 691 . . . . . . . . . . . . . . 15 ((2 − 1) + 1) = 2
5652, 55eqtrdi 2796 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((2 − 𝑘) + 1) = 2)
5750, 56oveq12d 7466 . . . . . . . . . . . . 13 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 2))
5849, 57oveq12d 7466 . . . . . . . . . . . 12 (𝑘 = 1 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
5945, 58sylbi 217 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
60 bpoly1 16099 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6160oveq1d 7463 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 2) = ((𝑋 − (1 / 2)) / 2))
6261oveq2d 7464 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (2 · ((𝑋 − (1 / 2)) / 2)))
63 halfcn 12508 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℂ
64 subcl 11535 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
6563, 64mpan2 690 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
66 2ne0 12397 . . . . . . . . . . . . . 14 2 ≠ 0
67 divcan2 11957 . . . . . . . . . . . . . 14 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6827, 66, 67mp3an23 1453 . . . . . . . . . . . . 13 ((𝑋 − (1 / 2)) ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6965, 68syl 17 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
7062, 69eqtrd 2780 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (𝑋 − (1 / 2)))
7159, 70sylan9eqr 2802 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7265adantr 480 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → (𝑋 − (1 / 2)) ∈ ℂ)
7371, 72eqeltrd 2844 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7444, 73jaodan 958 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = (0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7519, 74sylan2b 593 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7612, 75, 59fsump1 15804 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))))
7742, 40eqeltrdi 2852 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ)
7834fsum1 15795 . . . . . . . . 9 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
7913, 77, 78sylancr 586 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
8079, 42eqtrd 2780 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
8180, 70oveq12d 7466 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))) = ((1 / 3) + (𝑋 − (1 / 2))))
8276, 81eqtrd 2780 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = ((1 / 3) + (𝑋 − (1 / 2))))
83 addsub12 11549 . . . . . . 7 (((1 / 3) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8440, 63, 83mp3an13 1452 . . . . . 6 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8563, 40negsubdi2i 11622 . . . . . . . 8 -((1 / 2) − (1 / 3)) = ((1 / 3) − (1 / 2))
86 halfthird 12901 . . . . . . . . 9 ((1 / 2) − (1 / 3)) = (1 / 6)
8786negeqi 11529 . . . . . . . 8 -((1 / 2) − (1 / 3)) = -(1 / 6)
8885, 87eqtr3i 2770 . . . . . . 7 ((1 / 3) − (1 / 2)) = -(1 / 6)
8988oveq2i 7459 . . . . . 6 (𝑋 + ((1 / 3) − (1 / 2))) = (𝑋 + -(1 / 6))
9084, 89eqtrdi 2796 . . . . 5 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + -(1 / 6)))
91 6cn 12384 . . . . . . 7 6 ∈ ℂ
92 6re 12383 . . . . . . . 8 6 ∈ ℝ
93 6pos 12403 . . . . . . . 8 0 < 6
9492, 93gt0ne0ii 11826 . . . . . . 7 6 ≠ 0
9591, 94reccli 12024 . . . . . 6 (1 / 6) ∈ ℂ
96 negsub 11584 . . . . . 6 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9795, 96mpan2 690 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9882, 90, 973eqtrd 2784 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
998, 98eqtrid 2792 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
10099oveq2d 7464 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))) = ((𝑋↑2) − (𝑋 − (1 / 6))))
101 sqcl 14168 . . 3 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
102 subsub 11566 . . . 4 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
10395, 102mp3an3 1450 . . 3 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
104101, 103mpancom 687 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
1053, 100, 1043eqtrd 2784 1 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  {cpr 4650  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  3c3 12349  6c6 12352  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cexp 14112  Ccbc 14351  Σcsu 15734   BernPoly cbp 16094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-bpoly 16095
This theorem is referenced by:  bpoly3  16106  bpoly4  16107
  Copyright terms: Public domain W3C validator