Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfvlem Structured version   Visualization version   GIF version

Theorem lmatfvlem 31765
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfvlem.1 𝐾 ∈ ℕ0
lmatfvlem.2 𝐿 ∈ ℕ0
lmatfvlem.3 𝐼𝑁
lmatfvlem.4 𝐽𝑁
lmatfvlem.5 (𝐾 + 1) = 𝐼
lmatfvlem.6 (𝐿 + 1) = 𝐽
lmatfvlem.7 (𝑊𝐾) = 𝑋
lmatfvlem.8 (𝜑 → (𝑋𝐿) = 𝑌)
Assertion
Ref Expression
lmatfvlem (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝐾(𝑖)   𝐿(𝑖)   𝑉(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem lmatfvlem
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.n . . 3 (𝜑𝑁 ∈ ℕ)
3 lmatfval.w . . 3 (𝜑𝑊 ∈ Word Word 𝑉)
4 lmatfval.1 . . 3 (𝜑 → (♯‘𝑊) = 𝑁)
5 lmatfval.2 . . 3 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
6 lmatfvlem.5 . . . . . . . 8 (𝐾 + 1) = 𝐼
7 lmatfvlem.1 . . . . . . . . 9 𝐾 ∈ ℕ0
8 nn0p1nn 12272 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
97, 8ax-mp 5 . . . . . . . 8 (𝐾 + 1) ∈ ℕ
106, 9eqeltrri 2836 . . . . . . 7 𝐼 ∈ ℕ
11 nnge1 12001 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
1210, 11ax-mp 5 . . . . . 6 1 ≤ 𝐼
13 lmatfvlem.3 . . . . . 6 𝐼𝑁
1412, 13pm3.2i 471 . . . . 5 (1 ≤ 𝐼𝐼𝑁)
1514a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐼𝐼𝑁))
16 nnz 12342 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
1710, 16ax-mp 5 . . . . . 6 𝐼 ∈ ℤ
1817a1i 11 . . . . 5 (𝜑𝐼 ∈ ℤ)
19 1z 12350 . . . . . 6 1 ∈ ℤ
2019a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
212nnzd 12425 . . . . 5 (𝜑𝑁 ∈ ℤ)
22 elfz 13245 . . . . 5 ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2318, 20, 21, 22syl3anc 1370 . . . 4 (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2415, 23mpbird 256 . . 3 (𝜑𝐼 ∈ (1...𝑁))
25 lmatfvlem.6 . . . . . . . 8 (𝐿 + 1) = 𝐽
26 lmatfvlem.2 . . . . . . . . 9 𝐿 ∈ ℕ0
27 nn0p1nn 12272 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ)
2826, 27ax-mp 5 . . . . . . . 8 (𝐿 + 1) ∈ ℕ
2925, 28eqeltrri 2836 . . . . . . 7 𝐽 ∈ ℕ
30 nnge1 12001 . . . . . . 7 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
3129, 30ax-mp 5 . . . . . 6 1 ≤ 𝐽
32 lmatfvlem.4 . . . . . 6 𝐽𝑁
3331, 32pm3.2i 471 . . . . 5 (1 ≤ 𝐽𝐽𝑁)
3433a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐽𝐽𝑁))
35 nnz 12342 . . . . . . 7 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
3629, 35ax-mp 5 . . . . . 6 𝐽 ∈ ℤ
3736a1i 11 . . . . 5 (𝜑𝐽 ∈ ℤ)
38 elfz 13245 . . . . 5 ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
3937, 20, 21, 38syl3anc 1370 . . . 4 (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
4034, 39mpbird 256 . . 3 (𝜑𝐽 ∈ (1...𝑁))
411, 2, 3, 4, 5, 24, 40lmatfval 31764 . 2 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
427nn0cni 12245 . . . . . . . 8 𝐾 ∈ ℂ
43 ax-1cn 10929 . . . . . . . 8 1 ∈ ℂ
4442, 43pncan3oi 11237 . . . . . . 7 ((𝐾 + 1) − 1) = 𝐾
456oveq1i 7285 . . . . . . 7 ((𝐾 + 1) − 1) = (𝐼 − 1)
4644, 45eqtr3i 2768 . . . . . 6 𝐾 = (𝐼 − 1)
4746fveq2i 6777 . . . . 5 (𝑊𝐾) = (𝑊‘(𝐼 − 1))
48 lmatfvlem.7 . . . . 5 (𝑊𝐾) = 𝑋
4947, 48eqtr3i 2768 . . . 4 (𝑊‘(𝐼 − 1)) = 𝑋
5049a1i 11 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋)
5150fveq1d 6776 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1)))
5226nn0cni 12245 . . . . . . 7 𝐿 ∈ ℂ
5352, 43pncan3oi 11237 . . . . . 6 ((𝐿 + 1) − 1) = 𝐿
5425oveq1i 7285 . . . . . 6 ((𝐿 + 1) − 1) = (𝐽 − 1)
5553, 54eqtr3i 2768 . . . . 5 𝐿 = (𝐽 − 1)
5655a1i 11 . . . 4 (𝜑𝐿 = (𝐽 − 1))
5756fveq2d 6778 . . 3 (𝜑 → (𝑋𝐿) = (𝑋‘(𝐽 − 1)))
58 lmatfvlem.8 . . 3 (𝜑 → (𝑋𝐿) = 𝑌)
5957, 58eqtr3d 2780 . 2 (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌)
6041, 51, 593eqtrd 2782 1 (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  litMatclmat 31761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lmat 31762
This theorem is referenced by:  lmat22e12  31769  lmat22e21  31770  lmat22e22  31771
  Copyright terms: Public domain W3C validator