Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatfvlem | Structured version Visualization version GIF version |
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
Ref | Expression |
---|---|
lmatfval.m | ⊢ 𝑀 = (litMat‘𝑊) |
lmatfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lmatfval.w | ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) |
lmatfval.1 | ⊢ (𝜑 → (♯‘𝑊) = 𝑁) |
lmatfval.2 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) |
lmatfvlem.1 | ⊢ 𝐾 ∈ ℕ0 |
lmatfvlem.2 | ⊢ 𝐿 ∈ ℕ0 |
lmatfvlem.3 | ⊢ 𝐼 ≤ 𝑁 |
lmatfvlem.4 | ⊢ 𝐽 ≤ 𝑁 |
lmatfvlem.5 | ⊢ (𝐾 + 1) = 𝐼 |
lmatfvlem.6 | ⊢ (𝐿 + 1) = 𝐽 |
lmatfvlem.7 | ⊢ (𝑊‘𝐾) = 𝑋 |
lmatfvlem.8 | ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) |
Ref | Expression |
---|---|
lmatfvlem | ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmatfval.m | . . 3 ⊢ 𝑀 = (litMat‘𝑊) | |
2 | lmatfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lmatfval.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) | |
4 | lmatfval.1 | . . 3 ⊢ (𝜑 → (♯‘𝑊) = 𝑁) | |
5 | lmatfval.2 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) | |
6 | lmatfvlem.5 | . . . . . . . 8 ⊢ (𝐾 + 1) = 𝐼 | |
7 | lmatfvlem.1 | . . . . . . . . 9 ⊢ 𝐾 ∈ ℕ0 | |
8 | nn0p1nn 12272 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐾 + 1) ∈ ℕ |
10 | 6, 9 | eqeltrri 2836 | . . . . . . 7 ⊢ 𝐼 ∈ ℕ |
11 | nnge1 12001 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ≤ 𝐼) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐼 |
13 | lmatfvlem.3 | . . . . . 6 ⊢ 𝐼 ≤ 𝑁 | |
14 | 12, 13 | pm3.2i 471 | . . . . 5 ⊢ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁)) |
16 | nnz 12342 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
17 | 10, 16 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
19 | 1z 12350 | . . . . . 6 ⊢ 1 ∈ ℤ | |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) |
21 | 2 | nnzd 12425 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
22 | elfz 13245 | . . . . 5 ⊢ ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) | |
23 | 18, 20, 21, 22 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) |
24 | 15, 23 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
25 | lmatfvlem.6 | . . . . . . . 8 ⊢ (𝐿 + 1) = 𝐽 | |
26 | lmatfvlem.2 | . . . . . . . . 9 ⊢ 𝐿 ∈ ℕ0 | |
27 | nn0p1nn 12272 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐿 + 1) ∈ ℕ |
29 | 25, 28 | eqeltrri 2836 | . . . . . . 7 ⊢ 𝐽 ∈ ℕ |
30 | nnge1 12001 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 1 ≤ 𝐽) | |
31 | 29, 30 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐽 |
32 | lmatfvlem.4 | . . . . . 6 ⊢ 𝐽 ≤ 𝑁 | |
33 | 31, 32 | pm3.2i 471 | . . . . 5 ⊢ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁) |
34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁)) |
35 | nnz 12342 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 𝐽 ∈ ℤ) | |
36 | 29, 35 | ax-mp 5 | . . . . . 6 ⊢ 𝐽 ∈ ℤ |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
38 | elfz 13245 | . . . . 5 ⊢ ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) | |
39 | 37, 20, 21, 38 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) |
40 | 34, 39 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
41 | 1, 2, 3, 4, 5, 24, 40 | lmatfval 31764 | . 2 ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) |
42 | 7 | nn0cni 12245 | . . . . . . . 8 ⊢ 𝐾 ∈ ℂ |
43 | ax-1cn 10929 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
44 | 42, 43 | pncan3oi 11237 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = 𝐾 |
45 | 6 | oveq1i 7285 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = (𝐼 − 1) |
46 | 44, 45 | eqtr3i 2768 | . . . . . 6 ⊢ 𝐾 = (𝐼 − 1) |
47 | 46 | fveq2i 6777 | . . . . 5 ⊢ (𝑊‘𝐾) = (𝑊‘(𝐼 − 1)) |
48 | lmatfvlem.7 | . . . . 5 ⊢ (𝑊‘𝐾) = 𝑋 | |
49 | 47, 48 | eqtr3i 2768 | . . . 4 ⊢ (𝑊‘(𝐼 − 1)) = 𝑋 |
50 | 49 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋) |
51 | 50 | fveq1d 6776 | . 2 ⊢ (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1))) |
52 | 26 | nn0cni 12245 | . . . . . . 7 ⊢ 𝐿 ∈ ℂ |
53 | 52, 43 | pncan3oi 11237 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = 𝐿 |
54 | 25 | oveq1i 7285 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = (𝐽 − 1) |
55 | 53, 54 | eqtr3i 2768 | . . . . 5 ⊢ 𝐿 = (𝐽 − 1) |
56 | 55 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐿 = (𝐽 − 1)) |
57 | 56 | fveq2d 6778 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = (𝑋‘(𝐽 − 1))) |
58 | lmatfvlem.8 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) | |
59 | 57, 58 | eqtr3d 2780 | . 2 ⊢ (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌) |
60 | 41, 51, 59 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Word cword 14217 litMatclmat 31761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-lmat 31762 |
This theorem is referenced by: lmat22e12 31769 lmat22e21 31770 lmat22e22 31771 |
Copyright terms: Public domain | W3C validator |