![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatfvlem | Structured version Visualization version GIF version |
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
Ref | Expression |
---|---|
lmatfval.m | ⊢ 𝑀 = (litMat‘𝑊) |
lmatfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lmatfval.w | ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) |
lmatfval.1 | ⊢ (𝜑 → (♯‘𝑊) = 𝑁) |
lmatfval.2 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) |
lmatfvlem.1 | ⊢ 𝐾 ∈ ℕ0 |
lmatfvlem.2 | ⊢ 𝐿 ∈ ℕ0 |
lmatfvlem.3 | ⊢ 𝐼 ≤ 𝑁 |
lmatfvlem.4 | ⊢ 𝐽 ≤ 𝑁 |
lmatfvlem.5 | ⊢ (𝐾 + 1) = 𝐼 |
lmatfvlem.6 | ⊢ (𝐿 + 1) = 𝐽 |
lmatfvlem.7 | ⊢ (𝑊‘𝐾) = 𝑋 |
lmatfvlem.8 | ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) |
Ref | Expression |
---|---|
lmatfvlem | ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmatfval.m | . . 3 ⊢ 𝑀 = (litMat‘𝑊) | |
2 | lmatfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lmatfval.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) | |
4 | lmatfval.1 | . . 3 ⊢ (𝜑 → (♯‘𝑊) = 𝑁) | |
5 | lmatfval.2 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) | |
6 | lmatfvlem.5 | . . . . . . . 8 ⊢ (𝐾 + 1) = 𝐼 | |
7 | lmatfvlem.1 | . . . . . . . . 9 ⊢ 𝐾 ∈ ℕ0 | |
8 | nn0p1nn 12592 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐾 + 1) ∈ ℕ |
10 | 6, 9 | eqeltrri 2841 | . . . . . . 7 ⊢ 𝐼 ∈ ℕ |
11 | nnge1 12321 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ≤ 𝐼) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐼 |
13 | lmatfvlem.3 | . . . . . 6 ⊢ 𝐼 ≤ 𝑁 | |
14 | 12, 13 | pm3.2i 470 | . . . . 5 ⊢ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁)) |
16 | nnz 12660 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
17 | 10, 16 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
19 | 1z 12673 | . . . . . 6 ⊢ 1 ∈ ℤ | |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) |
21 | 2 | nnzd 12666 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
22 | elfz 13573 | . . . . 5 ⊢ ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) | |
23 | 18, 20, 21, 22 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) |
24 | 15, 23 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
25 | lmatfvlem.6 | . . . . . . . 8 ⊢ (𝐿 + 1) = 𝐽 | |
26 | lmatfvlem.2 | . . . . . . . . 9 ⊢ 𝐿 ∈ ℕ0 | |
27 | nn0p1nn 12592 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐿 + 1) ∈ ℕ |
29 | 25, 28 | eqeltrri 2841 | . . . . . . 7 ⊢ 𝐽 ∈ ℕ |
30 | nnge1 12321 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 1 ≤ 𝐽) | |
31 | 29, 30 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐽 |
32 | lmatfvlem.4 | . . . . . 6 ⊢ 𝐽 ≤ 𝑁 | |
33 | 31, 32 | pm3.2i 470 | . . . . 5 ⊢ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁) |
34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁)) |
35 | nnz 12660 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 𝐽 ∈ ℤ) | |
36 | 29, 35 | ax-mp 5 | . . . . . 6 ⊢ 𝐽 ∈ ℤ |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
38 | elfz 13573 | . . . . 5 ⊢ ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) | |
39 | 37, 20, 21, 38 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) |
40 | 34, 39 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
41 | 1, 2, 3, 4, 5, 24, 40 | lmatfval 33760 | . 2 ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) |
42 | 7 | nn0cni 12565 | . . . . . . . 8 ⊢ 𝐾 ∈ ℂ |
43 | ax-1cn 11242 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
44 | 42, 43 | pncan3oi 11552 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = 𝐾 |
45 | 6 | oveq1i 7458 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = (𝐼 − 1) |
46 | 44, 45 | eqtr3i 2770 | . . . . . 6 ⊢ 𝐾 = (𝐼 − 1) |
47 | 46 | fveq2i 6923 | . . . . 5 ⊢ (𝑊‘𝐾) = (𝑊‘(𝐼 − 1)) |
48 | lmatfvlem.7 | . . . . 5 ⊢ (𝑊‘𝐾) = 𝑋 | |
49 | 47, 48 | eqtr3i 2770 | . . . 4 ⊢ (𝑊‘(𝐼 − 1)) = 𝑋 |
50 | 49 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋) |
51 | 50 | fveq1d 6922 | . 2 ⊢ (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1))) |
52 | 26 | nn0cni 12565 | . . . . . . 7 ⊢ 𝐿 ∈ ℂ |
53 | 52, 43 | pncan3oi 11552 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = 𝐿 |
54 | 25 | oveq1i 7458 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = (𝐽 − 1) |
55 | 53, 54 | eqtr3i 2770 | . . . . 5 ⊢ 𝐿 = (𝐽 − 1) |
56 | 55 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐿 = (𝐽 − 1)) |
57 | 56 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = (𝑋‘(𝐽 − 1))) |
58 | lmatfvlem.8 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) | |
59 | 57, 58 | eqtr3d 2782 | . 2 ⊢ (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌) |
60 | 41, 51, 59 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 litMatclmat 33757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-lmat 33758 |
This theorem is referenced by: lmat22e12 33765 lmat22e21 33766 lmat22e22 33767 |
Copyright terms: Public domain | W3C validator |