Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatfvlem | Structured version Visualization version GIF version |
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
Ref | Expression |
---|---|
lmatfval.m | ⊢ 𝑀 = (litMat‘𝑊) |
lmatfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lmatfval.w | ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) |
lmatfval.1 | ⊢ (𝜑 → (♯‘𝑊) = 𝑁) |
lmatfval.2 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) |
lmatfvlem.1 | ⊢ 𝐾 ∈ ℕ0 |
lmatfvlem.2 | ⊢ 𝐿 ∈ ℕ0 |
lmatfvlem.3 | ⊢ 𝐼 ≤ 𝑁 |
lmatfvlem.4 | ⊢ 𝐽 ≤ 𝑁 |
lmatfvlem.5 | ⊢ (𝐾 + 1) = 𝐼 |
lmatfvlem.6 | ⊢ (𝐿 + 1) = 𝐽 |
lmatfvlem.7 | ⊢ (𝑊‘𝐾) = 𝑋 |
lmatfvlem.8 | ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) |
Ref | Expression |
---|---|
lmatfvlem | ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmatfval.m | . . 3 ⊢ 𝑀 = (litMat‘𝑊) | |
2 | lmatfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lmatfval.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) | |
4 | lmatfval.1 | . . 3 ⊢ (𝜑 → (♯‘𝑊) = 𝑁) | |
5 | lmatfval.2 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) | |
6 | lmatfvlem.5 | . . . . . . . 8 ⊢ (𝐾 + 1) = 𝐼 | |
7 | lmatfvlem.1 | . . . . . . . . 9 ⊢ 𝐾 ∈ ℕ0 | |
8 | nn0p1nn 11973 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐾 + 1) ∈ ℕ |
10 | 6, 9 | eqeltrri 2849 | . . . . . . 7 ⊢ 𝐼 ∈ ℕ |
11 | nnge1 11702 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ≤ 𝐼) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐼 |
13 | lmatfvlem.3 | . . . . . 6 ⊢ 𝐼 ≤ 𝑁 | |
14 | 12, 13 | pm3.2i 474 | . . . . 5 ⊢ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁)) |
16 | nnz 12043 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
17 | 10, 16 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
19 | 1z 12051 | . . . . . 6 ⊢ 1 ∈ ℤ | |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) |
21 | 2 | nnzd 12125 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
22 | elfz 12945 | . . . . 5 ⊢ ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) | |
23 | 18, 20, 21, 22 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) |
24 | 15, 23 | mpbird 260 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
25 | lmatfvlem.6 | . . . . . . . 8 ⊢ (𝐿 + 1) = 𝐽 | |
26 | lmatfvlem.2 | . . . . . . . . 9 ⊢ 𝐿 ∈ ℕ0 | |
27 | nn0p1nn 11973 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐿 + 1) ∈ ℕ |
29 | 25, 28 | eqeltrri 2849 | . . . . . . 7 ⊢ 𝐽 ∈ ℕ |
30 | nnge1 11702 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 1 ≤ 𝐽) | |
31 | 29, 30 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐽 |
32 | lmatfvlem.4 | . . . . . 6 ⊢ 𝐽 ≤ 𝑁 | |
33 | 31, 32 | pm3.2i 474 | . . . . 5 ⊢ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁) |
34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁)) |
35 | nnz 12043 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 𝐽 ∈ ℤ) | |
36 | 29, 35 | ax-mp 5 | . . . . . 6 ⊢ 𝐽 ∈ ℤ |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
38 | elfz 12945 | . . . . 5 ⊢ ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) | |
39 | 37, 20, 21, 38 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) |
40 | 34, 39 | mpbird 260 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
41 | 1, 2, 3, 4, 5, 24, 40 | lmatfval 31285 | . 2 ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) |
42 | 7 | nn0cni 11946 | . . . . . . . 8 ⊢ 𝐾 ∈ ℂ |
43 | ax-1cn 10633 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
44 | 42, 43 | pncan3oi 10940 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = 𝐾 |
45 | 6 | oveq1i 7160 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = (𝐼 − 1) |
46 | 44, 45 | eqtr3i 2783 | . . . . . 6 ⊢ 𝐾 = (𝐼 − 1) |
47 | 46 | fveq2i 6661 | . . . . 5 ⊢ (𝑊‘𝐾) = (𝑊‘(𝐼 − 1)) |
48 | lmatfvlem.7 | . . . . 5 ⊢ (𝑊‘𝐾) = 𝑋 | |
49 | 47, 48 | eqtr3i 2783 | . . . 4 ⊢ (𝑊‘(𝐼 − 1)) = 𝑋 |
50 | 49 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋) |
51 | 50 | fveq1d 6660 | . 2 ⊢ (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1))) |
52 | 26 | nn0cni 11946 | . . . . . . 7 ⊢ 𝐿 ∈ ℂ |
53 | 52, 43 | pncan3oi 10940 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = 𝐿 |
54 | 25 | oveq1i 7160 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = (𝐽 − 1) |
55 | 53, 54 | eqtr3i 2783 | . . . . 5 ⊢ 𝐿 = (𝐽 − 1) |
56 | 55 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐿 = (𝐽 − 1)) |
57 | 56 | fveq2d 6662 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = (𝑋‘(𝐽 − 1))) |
58 | lmatfvlem.8 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) | |
59 | 57, 58 | eqtr3d 2795 | . 2 ⊢ (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌) |
60 | 41, 51, 59 | 3eqtrd 2797 | 1 ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 ≤ cle 10714 − cmin 10908 ℕcn 11674 ℕ0cn0 11934 ℤcz 12020 ...cfz 12939 ..^cfzo 13082 ♯chash 13740 Word cword 13913 litMatclmat 31282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-lmat 31283 |
This theorem is referenced by: lmat22e12 31290 lmat22e21 31291 lmat22e22 31292 |
Copyright terms: Public domain | W3C validator |