| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatfvlem | Structured version Visualization version GIF version | ||
| Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| lmatfval.m | ⊢ 𝑀 = (litMat‘𝑊) |
| lmatfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lmatfval.w | ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) |
| lmatfval.1 | ⊢ (𝜑 → (♯‘𝑊) = 𝑁) |
| lmatfval.2 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) |
| lmatfvlem.1 | ⊢ 𝐾 ∈ ℕ0 |
| lmatfvlem.2 | ⊢ 𝐿 ∈ ℕ0 |
| lmatfvlem.3 | ⊢ 𝐼 ≤ 𝑁 |
| lmatfvlem.4 | ⊢ 𝐽 ≤ 𝑁 |
| lmatfvlem.5 | ⊢ (𝐾 + 1) = 𝐼 |
| lmatfvlem.6 | ⊢ (𝐿 + 1) = 𝐽 |
| lmatfvlem.7 | ⊢ (𝑊‘𝐾) = 𝑋 |
| lmatfvlem.8 | ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) |
| Ref | Expression |
|---|---|
| lmatfvlem | ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmatfval.m | . . 3 ⊢ 𝑀 = (litMat‘𝑊) | |
| 2 | lmatfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | lmatfval.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) | |
| 4 | lmatfval.1 | . . 3 ⊢ (𝜑 → (♯‘𝑊) = 𝑁) | |
| 5 | lmatfval.2 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) | |
| 6 | lmatfvlem.5 | . . . . . . . 8 ⊢ (𝐾 + 1) = 𝐼 | |
| 7 | lmatfvlem.1 | . . . . . . . . 9 ⊢ 𝐾 ∈ ℕ0 | |
| 8 | nn0p1nn 12420 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐾 + 1) ∈ ℕ |
| 10 | 6, 9 | eqeltrri 2828 | . . . . . . 7 ⊢ 𝐼 ∈ ℕ |
| 11 | nnge1 12153 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ≤ 𝐼) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐼 |
| 13 | lmatfvlem.3 | . . . . . 6 ⊢ 𝐼 ≤ 𝑁 | |
| 14 | 12, 13 | pm3.2i 470 | . . . . 5 ⊢ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁)) |
| 16 | nnz 12489 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
| 17 | 10, 16 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 19 | 1z 12502 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) |
| 21 | 2 | nnzd 12495 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 22 | elfz 13413 | . . . . 5 ⊢ ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) | |
| 23 | 18, 20, 21, 22 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) |
| 24 | 15, 23 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| 25 | lmatfvlem.6 | . . . . . . . 8 ⊢ (𝐿 + 1) = 𝐽 | |
| 26 | lmatfvlem.2 | . . . . . . . . 9 ⊢ 𝐿 ∈ ℕ0 | |
| 27 | nn0p1nn 12420 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐿 + 1) ∈ ℕ |
| 29 | 25, 28 | eqeltrri 2828 | . . . . . . 7 ⊢ 𝐽 ∈ ℕ |
| 30 | nnge1 12153 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 1 ≤ 𝐽) | |
| 31 | 29, 30 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐽 |
| 32 | lmatfvlem.4 | . . . . . 6 ⊢ 𝐽 ≤ 𝑁 | |
| 33 | 31, 32 | pm3.2i 470 | . . . . 5 ⊢ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁) |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁)) |
| 35 | nnz 12489 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 𝐽 ∈ ℤ) | |
| 36 | 29, 35 | ax-mp 5 | . . . . . 6 ⊢ 𝐽 ∈ ℤ |
| 37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 38 | elfz 13413 | . . . . 5 ⊢ ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) | |
| 39 | 37, 20, 21, 38 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) |
| 40 | 34, 39 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
| 41 | 1, 2, 3, 4, 5, 24, 40 | lmatfval 33825 | . 2 ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) |
| 42 | 7 | nn0cni 12393 | . . . . . . . 8 ⊢ 𝐾 ∈ ℂ |
| 43 | ax-1cn 11064 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 44 | 42, 43 | pncan3oi 11376 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = 𝐾 |
| 45 | 6 | oveq1i 7356 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = (𝐼 − 1) |
| 46 | 44, 45 | eqtr3i 2756 | . . . . . 6 ⊢ 𝐾 = (𝐼 − 1) |
| 47 | 46 | fveq2i 6825 | . . . . 5 ⊢ (𝑊‘𝐾) = (𝑊‘(𝐼 − 1)) |
| 48 | lmatfvlem.7 | . . . . 5 ⊢ (𝑊‘𝐾) = 𝑋 | |
| 49 | 47, 48 | eqtr3i 2756 | . . . 4 ⊢ (𝑊‘(𝐼 − 1)) = 𝑋 |
| 50 | 49 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋) |
| 51 | 50 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1))) |
| 52 | 26 | nn0cni 12393 | . . . . . . 7 ⊢ 𝐿 ∈ ℂ |
| 53 | 52, 43 | pncan3oi 11376 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = 𝐿 |
| 54 | 25 | oveq1i 7356 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = (𝐽 − 1) |
| 55 | 53, 54 | eqtr3i 2756 | . . . . 5 ⊢ 𝐿 = (𝐽 − 1) |
| 56 | 55 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐿 = (𝐽 − 1)) |
| 57 | 56 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = (𝑋‘(𝐽 − 1))) |
| 58 | lmatfvlem.8 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) | |
| 59 | 57, 58 | eqtr3d 2768 | . 2 ⊢ (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌) |
| 60 | 41, 51, 59 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ≤ cle 11147 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 Word cword 14420 litMatclmat 33822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lmat 33823 |
| This theorem is referenced by: lmat22e12 33830 lmat22e21 33831 lmat22e22 33832 |
| Copyright terms: Public domain | W3C validator |