Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatfvlem | Structured version Visualization version GIF version |
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
Ref | Expression |
---|---|
lmatfval.m | ⊢ 𝑀 = (litMat‘𝑊) |
lmatfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lmatfval.w | ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) |
lmatfval.1 | ⊢ (𝜑 → (♯‘𝑊) = 𝑁) |
lmatfval.2 | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) |
lmatfvlem.1 | ⊢ 𝐾 ∈ ℕ0 |
lmatfvlem.2 | ⊢ 𝐿 ∈ ℕ0 |
lmatfvlem.3 | ⊢ 𝐼 ≤ 𝑁 |
lmatfvlem.4 | ⊢ 𝐽 ≤ 𝑁 |
lmatfvlem.5 | ⊢ (𝐾 + 1) = 𝐼 |
lmatfvlem.6 | ⊢ (𝐿 + 1) = 𝐽 |
lmatfvlem.7 | ⊢ (𝑊‘𝐾) = 𝑋 |
lmatfvlem.8 | ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) |
Ref | Expression |
---|---|
lmatfvlem | ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmatfval.m | . . 3 ⊢ 𝑀 = (litMat‘𝑊) | |
2 | lmatfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lmatfval.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) | |
4 | lmatfval.1 | . . 3 ⊢ (𝜑 → (♯‘𝑊) = 𝑁) | |
5 | lmatfval.2 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) | |
6 | lmatfvlem.5 | . . . . . . . 8 ⊢ (𝐾 + 1) = 𝐼 | |
7 | lmatfvlem.1 | . . . . . . . . 9 ⊢ 𝐾 ∈ ℕ0 | |
8 | nn0p1nn 12202 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐾 + 1) ∈ ℕ |
10 | 6, 9 | eqeltrri 2836 | . . . . . . 7 ⊢ 𝐼 ∈ ℕ |
11 | nnge1 11931 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ≤ 𝐼) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐼 |
13 | lmatfvlem.3 | . . . . . 6 ⊢ 𝐼 ≤ 𝑁 | |
14 | 12, 13 | pm3.2i 470 | . . . . 5 ⊢ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁)) |
16 | nnz 12272 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
17 | 10, 16 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ ℤ |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
19 | 1z 12280 | . . . . . 6 ⊢ 1 ∈ ℤ | |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) |
21 | 2 | nnzd 12354 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
22 | elfz 13174 | . . . . 5 ⊢ ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) | |
23 | 18, 20, 21, 22 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁))) |
24 | 15, 23 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
25 | lmatfvlem.6 | . . . . . . . 8 ⊢ (𝐿 + 1) = 𝐽 | |
26 | lmatfvlem.2 | . . . . . . . . 9 ⊢ 𝐿 ∈ ℕ0 | |
27 | nn0p1nn 12202 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . 8 ⊢ (𝐿 + 1) ∈ ℕ |
29 | 25, 28 | eqeltrri 2836 | . . . . . . 7 ⊢ 𝐽 ∈ ℕ |
30 | nnge1 11931 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 1 ≤ 𝐽) | |
31 | 29, 30 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ 𝐽 |
32 | lmatfvlem.4 | . . . . . 6 ⊢ 𝐽 ≤ 𝑁 | |
33 | 31, 32 | pm3.2i 470 | . . . . 5 ⊢ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁) |
34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁)) |
35 | nnz 12272 | . . . . . . 7 ⊢ (𝐽 ∈ ℕ → 𝐽 ∈ ℤ) | |
36 | 29, 35 | ax-mp 5 | . . . . . 6 ⊢ 𝐽 ∈ ℤ |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
38 | elfz 13174 | . . . . 5 ⊢ ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) | |
39 | 37, 20, 21, 38 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽 ∧ 𝐽 ≤ 𝑁))) |
40 | 34, 39 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
41 | 1, 2, 3, 4, 5, 24, 40 | lmatfval 31666 | . 2 ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) |
42 | 7 | nn0cni 12175 | . . . . . . . 8 ⊢ 𝐾 ∈ ℂ |
43 | ax-1cn 10860 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
44 | 42, 43 | pncan3oi 11167 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = 𝐾 |
45 | 6 | oveq1i 7265 | . . . . . . 7 ⊢ ((𝐾 + 1) − 1) = (𝐼 − 1) |
46 | 44, 45 | eqtr3i 2768 | . . . . . 6 ⊢ 𝐾 = (𝐼 − 1) |
47 | 46 | fveq2i 6759 | . . . . 5 ⊢ (𝑊‘𝐾) = (𝑊‘(𝐼 − 1)) |
48 | lmatfvlem.7 | . . . . 5 ⊢ (𝑊‘𝐾) = 𝑋 | |
49 | 47, 48 | eqtr3i 2768 | . . . 4 ⊢ (𝑊‘(𝐼 − 1)) = 𝑋 |
50 | 49 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋) |
51 | 50 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1))) |
52 | 26 | nn0cni 12175 | . . . . . . 7 ⊢ 𝐿 ∈ ℂ |
53 | 52, 43 | pncan3oi 11167 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = 𝐿 |
54 | 25 | oveq1i 7265 | . . . . . 6 ⊢ ((𝐿 + 1) − 1) = (𝐽 − 1) |
55 | 53, 54 | eqtr3i 2768 | . . . . 5 ⊢ 𝐿 = (𝐽 − 1) |
56 | 55 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐿 = (𝐽 − 1)) |
57 | 56 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = (𝑋‘(𝐽 − 1))) |
58 | lmatfvlem.8 | . . 3 ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) | |
59 | 57, 58 | eqtr3d 2780 | . 2 ⊢ (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌) |
60 | 41, 51, 59 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 litMatclmat 31663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-lmat 31664 |
This theorem is referenced by: lmat22e12 31671 lmat22e21 31672 lmat22e22 31673 |
Copyright terms: Public domain | W3C validator |