Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfvlem Structured version   Visualization version   GIF version

Theorem lmatfvlem 32396
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfvlem.1 𝐾 ∈ ℕ0
lmatfvlem.2 𝐿 ∈ ℕ0
lmatfvlem.3 𝐼𝑁
lmatfvlem.4 𝐽𝑁
lmatfvlem.5 (𝐾 + 1) = 𝐼
lmatfvlem.6 (𝐿 + 1) = 𝐽
lmatfvlem.7 (𝑊𝐾) = 𝑋
lmatfvlem.8 (𝜑 → (𝑋𝐿) = 𝑌)
Assertion
Ref Expression
lmatfvlem (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝐾(𝑖)   𝐿(𝑖)   𝑉(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem lmatfvlem
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.n . . 3 (𝜑𝑁 ∈ ℕ)
3 lmatfval.w . . 3 (𝜑𝑊 ∈ Word Word 𝑉)
4 lmatfval.1 . . 3 (𝜑 → (♯‘𝑊) = 𝑁)
5 lmatfval.2 . . 3 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
6 lmatfvlem.5 . . . . . . . 8 (𝐾 + 1) = 𝐼
7 lmatfvlem.1 . . . . . . . . 9 𝐾 ∈ ℕ0
8 nn0p1nn 12452 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
97, 8ax-mp 5 . . . . . . . 8 (𝐾 + 1) ∈ ℕ
106, 9eqeltrri 2835 . . . . . . 7 𝐼 ∈ ℕ
11 nnge1 12181 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
1210, 11ax-mp 5 . . . . . 6 1 ≤ 𝐼
13 lmatfvlem.3 . . . . . 6 𝐼𝑁
1412, 13pm3.2i 471 . . . . 5 (1 ≤ 𝐼𝐼𝑁)
1514a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐼𝐼𝑁))
16 nnz 12520 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
1710, 16ax-mp 5 . . . . . 6 𝐼 ∈ ℤ
1817a1i 11 . . . . 5 (𝜑𝐼 ∈ ℤ)
19 1z 12533 . . . . . 6 1 ∈ ℤ
2019a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
212nnzd 12526 . . . . 5 (𝜑𝑁 ∈ ℤ)
22 elfz 13430 . . . . 5 ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2318, 20, 21, 22syl3anc 1371 . . . 4 (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2415, 23mpbird 256 . . 3 (𝜑𝐼 ∈ (1...𝑁))
25 lmatfvlem.6 . . . . . . . 8 (𝐿 + 1) = 𝐽
26 lmatfvlem.2 . . . . . . . . 9 𝐿 ∈ ℕ0
27 nn0p1nn 12452 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ)
2826, 27ax-mp 5 . . . . . . . 8 (𝐿 + 1) ∈ ℕ
2925, 28eqeltrri 2835 . . . . . . 7 𝐽 ∈ ℕ
30 nnge1 12181 . . . . . . 7 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
3129, 30ax-mp 5 . . . . . 6 1 ≤ 𝐽
32 lmatfvlem.4 . . . . . 6 𝐽𝑁
3331, 32pm3.2i 471 . . . . 5 (1 ≤ 𝐽𝐽𝑁)
3433a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐽𝐽𝑁))
35 nnz 12520 . . . . . . 7 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
3629, 35ax-mp 5 . . . . . 6 𝐽 ∈ ℤ
3736a1i 11 . . . . 5 (𝜑𝐽 ∈ ℤ)
38 elfz 13430 . . . . 5 ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
3937, 20, 21, 38syl3anc 1371 . . . 4 (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
4034, 39mpbird 256 . . 3 (𝜑𝐽 ∈ (1...𝑁))
411, 2, 3, 4, 5, 24, 40lmatfval 32395 . 2 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
427nn0cni 12425 . . . . . . . 8 𝐾 ∈ ℂ
43 ax-1cn 11109 . . . . . . . 8 1 ∈ ℂ
4442, 43pncan3oi 11417 . . . . . . 7 ((𝐾 + 1) − 1) = 𝐾
456oveq1i 7367 . . . . . . 7 ((𝐾 + 1) − 1) = (𝐼 − 1)
4644, 45eqtr3i 2766 . . . . . 6 𝐾 = (𝐼 − 1)
4746fveq2i 6845 . . . . 5 (𝑊𝐾) = (𝑊‘(𝐼 − 1))
48 lmatfvlem.7 . . . . 5 (𝑊𝐾) = 𝑋
4947, 48eqtr3i 2766 . . . 4 (𝑊‘(𝐼 − 1)) = 𝑋
5049a1i 11 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋)
5150fveq1d 6844 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1)))
5226nn0cni 12425 . . . . . . 7 𝐿 ∈ ℂ
5352, 43pncan3oi 11417 . . . . . 6 ((𝐿 + 1) − 1) = 𝐿
5425oveq1i 7367 . . . . . 6 ((𝐿 + 1) − 1) = (𝐽 − 1)
5553, 54eqtr3i 2766 . . . . 5 𝐿 = (𝐽 − 1)
5655a1i 11 . . . 4 (𝜑𝐿 = (𝐽 − 1))
5756fveq2d 6846 . . 3 (𝜑 → (𝑋𝐿) = (𝑋‘(𝐽 − 1)))
58 lmatfvlem.8 . . 3 (𝜑 → (𝑋𝐿) = 𝑌)
5957, 58eqtr3d 2778 . 2 (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌)
6041, 51, 593eqtrd 2780 1 (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  cle 11190  cmin 11385  cn 12153  0cn0 12413  cz 12499  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402  litMatclmat 32392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lmat 32393
This theorem is referenced by:  lmat22e12  32400  lmat22e21  32401  lmat22e22  32402
  Copyright terms: Public domain W3C validator