Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfvlem Structured version   Visualization version   GIF version

Theorem lmatfvlem 33630
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfvlem.1 𝐾 ∈ ℕ0
lmatfvlem.2 𝐿 ∈ ℕ0
lmatfvlem.3 𝐼𝑁
lmatfvlem.4 𝐽𝑁
lmatfvlem.5 (𝐾 + 1) = 𝐼
lmatfvlem.6 (𝐿 + 1) = 𝐽
lmatfvlem.7 (𝑊𝐾) = 𝑋
lmatfvlem.8 (𝜑 → (𝑋𝐿) = 𝑌)
Assertion
Ref Expression
lmatfvlem (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝐾(𝑖)   𝐿(𝑖)   𝑉(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem lmatfvlem
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.n . . 3 (𝜑𝑁 ∈ ℕ)
3 lmatfval.w . . 3 (𝜑𝑊 ∈ Word Word 𝑉)
4 lmatfval.1 . . 3 (𝜑 → (♯‘𝑊) = 𝑁)
5 lmatfval.2 . . 3 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
6 lmatfvlem.5 . . . . . . . 8 (𝐾 + 1) = 𝐼
7 lmatfvlem.1 . . . . . . . . 9 𝐾 ∈ ℕ0
8 nn0p1nn 12563 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
97, 8ax-mp 5 . . . . . . . 8 (𝐾 + 1) ∈ ℕ
106, 9eqeltrri 2823 . . . . . . 7 𝐼 ∈ ℕ
11 nnge1 12292 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
1210, 11ax-mp 5 . . . . . 6 1 ≤ 𝐼
13 lmatfvlem.3 . . . . . 6 𝐼𝑁
1412, 13pm3.2i 469 . . . . 5 (1 ≤ 𝐼𝐼𝑁)
1514a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐼𝐼𝑁))
16 nnz 12631 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
1710, 16ax-mp 5 . . . . . 6 𝐼 ∈ ℤ
1817a1i 11 . . . . 5 (𝜑𝐼 ∈ ℤ)
19 1z 12644 . . . . . 6 1 ∈ ℤ
2019a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
212nnzd 12637 . . . . 5 (𝜑𝑁 ∈ ℤ)
22 elfz 13544 . . . . 5 ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2318, 20, 21, 22syl3anc 1368 . . . 4 (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2415, 23mpbird 256 . . 3 (𝜑𝐼 ∈ (1...𝑁))
25 lmatfvlem.6 . . . . . . . 8 (𝐿 + 1) = 𝐽
26 lmatfvlem.2 . . . . . . . . 9 𝐿 ∈ ℕ0
27 nn0p1nn 12563 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ)
2826, 27ax-mp 5 . . . . . . . 8 (𝐿 + 1) ∈ ℕ
2925, 28eqeltrri 2823 . . . . . . 7 𝐽 ∈ ℕ
30 nnge1 12292 . . . . . . 7 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
3129, 30ax-mp 5 . . . . . 6 1 ≤ 𝐽
32 lmatfvlem.4 . . . . . 6 𝐽𝑁
3331, 32pm3.2i 469 . . . . 5 (1 ≤ 𝐽𝐽𝑁)
3433a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐽𝐽𝑁))
35 nnz 12631 . . . . . . 7 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
3629, 35ax-mp 5 . . . . . 6 𝐽 ∈ ℤ
3736a1i 11 . . . . 5 (𝜑𝐽 ∈ ℤ)
38 elfz 13544 . . . . 5 ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
3937, 20, 21, 38syl3anc 1368 . . . 4 (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
4034, 39mpbird 256 . . 3 (𝜑𝐽 ∈ (1...𝑁))
411, 2, 3, 4, 5, 24, 40lmatfval 33629 . 2 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
427nn0cni 12536 . . . . . . . 8 𝐾 ∈ ℂ
43 ax-1cn 11216 . . . . . . . 8 1 ∈ ℂ
4442, 43pncan3oi 11526 . . . . . . 7 ((𝐾 + 1) − 1) = 𝐾
456oveq1i 7434 . . . . . . 7 ((𝐾 + 1) − 1) = (𝐼 − 1)
4644, 45eqtr3i 2756 . . . . . 6 𝐾 = (𝐼 − 1)
4746fveq2i 6904 . . . . 5 (𝑊𝐾) = (𝑊‘(𝐼 − 1))
48 lmatfvlem.7 . . . . 5 (𝑊𝐾) = 𝑋
4947, 48eqtr3i 2756 . . . 4 (𝑊‘(𝐼 − 1)) = 𝑋
5049a1i 11 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋)
5150fveq1d 6903 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1)))
5226nn0cni 12536 . . . . . . 7 𝐿 ∈ ℂ
5352, 43pncan3oi 11526 . . . . . 6 ((𝐿 + 1) − 1) = 𝐿
5425oveq1i 7434 . . . . . 6 ((𝐿 + 1) − 1) = (𝐽 − 1)
5553, 54eqtr3i 2756 . . . . 5 𝐿 = (𝐽 − 1)
5655a1i 11 . . . 4 (𝜑𝐿 = (𝐽 − 1))
5756fveq2d 6905 . . 3 (𝜑 → (𝑋𝐿) = (𝑋‘(𝐽 − 1)))
58 lmatfvlem.8 . . 3 (𝜑 → (𝑋𝐿) = 𝑌)
5957, 58eqtr3d 2768 . 2 (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌)
6041, 51, 593eqtrd 2770 1 (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  0cc0 11158  1c1 11159   + caddc 11161  cle 11299  cmin 11494  cn 12264  0cn0 12524  cz 12610  ...cfz 13538  ..^cfzo 13681  chash 14347  Word cword 14522  litMatclmat 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-lmat 33627
This theorem is referenced by:  lmat22e12  33634  lmat22e21  33635  lmat22e22  33636
  Copyright terms: Public domain W3C validator