| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzneg | Structured version Visualization version GIF version | ||
| Description: Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| Ref | Expression |
|---|---|
| fzneg | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴)) | |
| 2 | zre 12482 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 4 | zre 12482 | . . . . . 6 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
| 5 | 4 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ) |
| 6 | 3, 5 | lenegd 11706 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ≤ 𝐶 ↔ -𝐶 ≤ -𝐴)) |
| 7 | zre 12482 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 8 | 7 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ) |
| 9 | 8, 3 | lenegd 11706 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ -𝐴 ≤ -𝐵)) |
| 10 | 6, 9 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
| 11 | 1, 10 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
| 12 | elfz 13423 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶))) | |
| 13 | znegcl 12517 | . . . 4 ⊢ (𝐴 ∈ ℤ → -𝐴 ∈ ℤ) | |
| 14 | znegcl 12517 | . . . 4 ⊢ (𝐶 ∈ ℤ → -𝐶 ∈ ℤ) | |
| 15 | znegcl 12517 | . . . 4 ⊢ (𝐵 ∈ ℤ → -𝐵 ∈ ℤ) | |
| 16 | elfz 13423 | . . . 4 ⊢ ((-𝐴 ∈ ℤ ∧ -𝐶 ∈ ℤ ∧ -𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) | |
| 17 | 13, 14, 15, 16 | syl3an 1160 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
| 18 | 17 | 3com23 1126 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
| 19 | 11, 12, 18 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 ≤ cle 11157 -cneg 11355 ℤcz 12478 ...cfz 13417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-z 12479 df-fz 13418 |
| This theorem is referenced by: acongeq 43090 |
| Copyright terms: Public domain | W3C validator |