Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzneg | Structured version Visualization version GIF version |
Description: Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
fzneg | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 464 | . . 3 ⊢ ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴)) | |
2 | zre 12180 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 2 | 3ad2ant1 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ) |
4 | zre 12180 | . . . . . 6 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
5 | 4 | 3ad2ant3 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ) |
6 | 3, 5 | lenegd 11411 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ≤ 𝐶 ↔ -𝐶 ≤ -𝐴)) |
7 | zre 12180 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
8 | 7 | 3ad2ant2 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ) |
9 | 8, 3 | lenegd 11411 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ -𝐴 ≤ -𝐵)) |
10 | 6, 9 | anbi12d 634 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
11 | 1, 10 | syl5bb 286 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
12 | elfz 13101 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶))) | |
13 | znegcl 12212 | . . . 4 ⊢ (𝐴 ∈ ℤ → -𝐴 ∈ ℤ) | |
14 | znegcl 12212 | . . . 4 ⊢ (𝐶 ∈ ℤ → -𝐶 ∈ ℤ) | |
15 | znegcl 12212 | . . . 4 ⊢ (𝐵 ∈ ℤ → -𝐵 ∈ ℤ) | |
16 | elfz 13101 | . . . 4 ⊢ ((-𝐴 ∈ ℤ ∧ -𝐶 ∈ ℤ ∧ -𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) | |
17 | 13, 14, 15, 16 | syl3an 1162 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
18 | 17 | 3com23 1128 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
19 | 11, 12, 18 | 3bitr4d 314 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 ℝcr 10728 ≤ cle 10868 -cneg 11063 ℤcz 12176 ...cfz 13095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-z 12177 df-fz 13096 |
This theorem is referenced by: acongeq 40508 |
Copyright terms: Public domain | W3C validator |