Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzneg Structured version   Visualization version   GIF version

Theorem fzneg 43089
Description: Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
fzneg ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵)))

Proof of Theorem fzneg
StepHypRef Expression
1 ancom 460 . . 3 ((𝐵𝐴𝐴𝐶) ↔ (𝐴𝐶𝐵𝐴))
2 zre 12482 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
323ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ)
4 zre 12482 . . . . . 6 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
543ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ)
63, 5lenegd 11706 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐶 ↔ -𝐶 ≤ -𝐴))
7 zre 12482 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
873ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ)
98, 3lenegd 11706 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵𝐴 ↔ -𝐴 ≤ -𝐵))
106, 9anbi12d 632 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴𝐶𝐵𝐴) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵)))
111, 10bitrid 283 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐵𝐴𝐴𝐶) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵)))
12 elfz 13423 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ (𝐵𝐴𝐴𝐶)))
13 znegcl 12517 . . . 4 (𝐴 ∈ ℤ → -𝐴 ∈ ℤ)
14 znegcl 12517 . . . 4 (𝐶 ∈ ℤ → -𝐶 ∈ ℤ)
15 znegcl 12517 . . . 4 (𝐵 ∈ ℤ → -𝐵 ∈ ℤ)
16 elfz 13423 . . . 4 ((-𝐴 ∈ ℤ ∧ -𝐶 ∈ ℤ ∧ -𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵)))
1713, 14, 15, 16syl3an 1160 . . 3 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵)))
18173com23 1126 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵)))
1911, 12, 183bitr4d 311 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113   class class class wbr 5095  (class class class)co 7355  cr 11015  cle 11157  -cneg 11355  cz 12478  ...cfz 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-z 12479  df-fz 13418
This theorem is referenced by:  acongeq  43090
  Copyright terms: Public domain W3C validator