![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzneg | Structured version Visualization version GIF version |
Description: Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
fzneg | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 462 | . . 3 ⊢ ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴)) | |
2 | zre 12508 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 2 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ) |
4 | zre 12508 | . . . . . 6 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
5 | 4 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ) |
6 | 3, 5 | lenegd 11739 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ≤ 𝐶 ↔ -𝐶 ≤ -𝐴)) |
7 | zre 12508 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
8 | 7 | 3ad2ant2 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ) |
9 | 8, 3 | lenegd 11739 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ -𝐴 ≤ -𝐵)) |
10 | 6, 9 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
11 | 1, 10 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
12 | elfz 13436 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶))) | |
13 | znegcl 12543 | . . . 4 ⊢ (𝐴 ∈ ℤ → -𝐴 ∈ ℤ) | |
14 | znegcl 12543 | . . . 4 ⊢ (𝐶 ∈ ℤ → -𝐶 ∈ ℤ) | |
15 | znegcl 12543 | . . . 4 ⊢ (𝐵 ∈ ℤ → -𝐵 ∈ ℤ) | |
16 | elfz 13436 | . . . 4 ⊢ ((-𝐴 ∈ ℤ ∧ -𝐶 ∈ ℤ ∧ -𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) | |
17 | 13, 14, 15, 16 | syl3an 1161 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
18 | 17 | 3com23 1127 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
19 | 11, 12, 18 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 ℝcr 11055 ≤ cle 11195 -cneg 11391 ℤcz 12504 ...cfz 13430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-z 12505 df-fz 13431 |
This theorem is referenced by: acongeq 41350 |
Copyright terms: Public domain | W3C validator |