Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fznatpl1 | Structured version Visualization version GIF version |
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
Ref | Expression |
---|---|
fznatpl1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 11036 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ℝ) | |
2 | elfzelz 13316 | . . . . . 6 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ) | |
3 | 2 | zred 12486 | . . . . 5 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ) |
4 | 3 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ℝ) |
5 | peano2re 11208 | . . . 4 ⊢ (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ) |
7 | peano2re 11208 | . . . . 5 ⊢ (1 ∈ ℝ → (1 + 1) ∈ ℝ) | |
8 | 1, 7 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ∈ ℝ) |
9 | 1 | ltp1d 11965 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (1 + 1)) |
10 | elfzle1 13319 | . . . . . 6 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 1 ≤ 𝐼) | |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ 𝐼) |
12 | 1re 11035 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
13 | leadd1 11503 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) | |
14 | 12, 12, 13 | mp3an13 1451 | . . . . . 6 ⊢ (𝐼 ∈ ℝ → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) |
15 | 4, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) |
16 | 11, 15 | mpbid 231 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ≤ (𝐼 + 1)) |
17 | 1, 8, 6, 9, 16 | ltletrd 11195 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (𝐼 + 1)) |
18 | 1, 6, 17 | ltled 11183 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ (𝐼 + 1)) |
19 | elfzle2 13320 | . . . 4 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1)) | |
20 | 19 | adantl 482 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1)) |
21 | nnz 12402 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
22 | 21 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
23 | 22 | zred 12486 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
24 | leaddsub 11511 | . . . . 5 ⊢ ((𝐼 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) | |
25 | 12, 24 | mp3an2 1448 | . . . 4 ⊢ ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) |
26 | 3, 23, 25 | syl2an2 683 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) |
27 | 20, 26 | mpbird 256 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ≤ 𝑁) |
28 | 2 | peano2zd 12489 | . . 3 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → (𝐼 + 1) ∈ ℤ) |
29 | 1z 12410 | . . . 4 ⊢ 1 ∈ ℤ | |
30 | elfz 13305 | . . . 4 ⊢ (((𝐼 + 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) | |
31 | 29, 30 | mp3an2 1448 | . . 3 ⊢ (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) |
32 | 28, 22, 31 | syl2an2 683 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) |
33 | 18, 27, 32 | mpbir2and 710 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2103 class class class wbr 5080 (class class class)co 7308 ℝcr 10930 1c1 10932 + caddc 10934 ≤ cle 11070 − cmin 11265 ℕcn 12033 ℤcz 12379 ...cfz 13299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 ax-cnex 10987 ax-resscn 10988 ax-1cn 10989 ax-icn 10990 ax-addcl 10991 ax-addrcl 10992 ax-mulcl 10993 ax-mulrcl 10994 ax-mulcom 10995 ax-addass 10996 ax-mulass 10997 ax-distr 10998 ax-i2m1 10999 ax-1ne0 11000 ax-1rid 11001 ax-rnegex 11002 ax-rrecex 11003 ax-cnre 11004 ax-pre-lttri 11005 ax-pre-lttrn 11006 ax-pre-ltadd 11007 ax-pre-mulgt0 11008 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7265 df-ov 7311 df-oprab 7312 df-mpo 7313 df-om 7749 df-1st 7867 df-2nd 7868 df-frecs 8132 df-wrecs 8163 df-recs 8237 df-rdg 8276 df-er 8534 df-en 8770 df-dom 8771 df-sdom 8772 df-pnf 11071 df-mnf 11072 df-xr 11073 df-ltxr 11074 df-le 11075 df-sub 11267 df-neg 11268 df-nn 12034 df-n0 12294 df-z 12380 df-uz 12643 df-fz 13300 |
This theorem is referenced by: axlowdimlem10 27417 axlowdimlem14 27421 1smat1 31850 madjusmdetlem2 31874 |
Copyright terms: Public domain | W3C validator |