MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznatpl1 Structured version   Visualization version   GIF version

Theorem fznatpl1 13239
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
Assertion
Ref Expression
fznatpl1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))

Proof of Theorem fznatpl1
StepHypRef Expression
1 1red 10907 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ℝ)
2 elfzelz 13185 . . . . . 6 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
32zred 12355 . . . . 5 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ)
43adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ℝ)
5 peano2re 11078 . . . 4 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
64, 5syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ)
7 peano2re 11078 . . . . 5 (1 ∈ ℝ → (1 + 1) ∈ ℝ)
81, 7syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ∈ ℝ)
91ltp1d 11835 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (1 + 1))
10 elfzle1 13188 . . . . . 6 (𝐼 ∈ (1...(𝑁 − 1)) → 1 ≤ 𝐼)
1110adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ 𝐼)
12 1re 10906 . . . . . . 7 1 ∈ ℝ
13 leadd1 11373 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1)))
1412, 12, 13mp3an13 1450 . . . . . 6 (𝐼 ∈ ℝ → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1)))
154, 14syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1)))
1611, 15mpbid 231 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ≤ (𝐼 + 1))
171, 8, 6, 9, 16ltletrd 11065 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (𝐼 + 1))
181, 6, 17ltled 11053 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ (𝐼 + 1))
19 elfzle2 13189 . . . 4 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1))
2019adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1))
21 nnz 12272 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2221adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℤ)
2322zred 12355 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℝ)
24 leaddsub 11381 . . . . 5 ((𝐼 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁𝐼 ≤ (𝑁 − 1)))
2512, 24mp3an2 1447 . . . 4 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁𝐼 ≤ (𝑁 − 1)))
263, 23, 25syl2an2 682 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≤ 𝑁𝐼 ≤ (𝑁 − 1)))
2720, 26mpbird 256 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ≤ 𝑁)
282peano2zd 12358 . . 3 (𝐼 ∈ (1...(𝑁 − 1)) → (𝐼 + 1) ∈ ℤ)
29 1z 12280 . . . 4 1 ∈ ℤ
30 elfz 13174 . . . 4 (((𝐼 + 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁)))
3129, 30mp3an2 1447 . . 3 (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁)))
3228, 22, 31syl2an2 682 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁)))
3318, 27, 32mpbir2and 709 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805  cle 10941  cmin 11135  cn 11903  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  axlowdimlem10  27222  axlowdimlem14  27226  1smat1  31656  madjusmdetlem2  31680
  Copyright terms: Public domain W3C validator