![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fznatpl1 | Structured version Visualization version GIF version |
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
Ref | Expression |
---|---|
fznatpl1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 11245 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ℝ) | |
2 | elfzelz 13533 | . . . . . 6 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ) | |
3 | 2 | zred 12696 | . . . . 5 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ) |
4 | 3 | adantl 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ℝ) |
5 | peano2re 11417 | . . . 4 ⊢ (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ) |
7 | peano2re 11417 | . . . . 5 ⊢ (1 ∈ ℝ → (1 + 1) ∈ ℝ) | |
8 | 1, 7 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ∈ ℝ) |
9 | 1 | ltp1d 12174 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (1 + 1)) |
10 | elfzle1 13536 | . . . . . 6 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 1 ≤ 𝐼) | |
11 | 10 | adantl 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ 𝐼) |
12 | 1re 11244 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
13 | leadd1 11712 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) | |
14 | 12, 12, 13 | mp3an13 1448 | . . . . . 6 ⊢ (𝐼 ∈ ℝ → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) |
15 | 4, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) |
16 | 11, 15 | mpbid 231 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ≤ (𝐼 + 1)) |
17 | 1, 8, 6, 9, 16 | ltletrd 11404 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (𝐼 + 1)) |
18 | 1, 6, 17 | ltled 11392 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ (𝐼 + 1)) |
19 | elfzle2 13537 | . . . 4 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1)) | |
20 | 19 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1)) |
21 | nnz 12609 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
22 | 21 | adantr 479 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
23 | 22 | zred 12696 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
24 | leaddsub 11720 | . . . . 5 ⊢ ((𝐼 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) | |
25 | 12, 24 | mp3an2 1445 | . . . 4 ⊢ ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) |
26 | 3, 23, 25 | syl2an2 684 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) |
27 | 20, 26 | mpbird 256 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ≤ 𝑁) |
28 | 2 | peano2zd 12699 | . . 3 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → (𝐼 + 1) ∈ ℤ) |
29 | 1z 12622 | . . . 4 ⊢ 1 ∈ ℤ | |
30 | elfz 13522 | . . . 4 ⊢ (((𝐼 + 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) | |
31 | 29, 30 | mp3an2 1445 | . . 3 ⊢ (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) |
32 | 28, 22, 31 | syl2an2 684 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) |
33 | 18, 27, 32 | mpbir2and 711 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 class class class wbr 5143 (class class class)co 7416 ℝcr 11137 1c1 11139 + caddc 11141 ≤ cle 11279 − cmin 11474 ℕcn 12242 ℤcz 12588 ...cfz 13516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 |
This theorem is referenced by: axlowdimlem10 28806 axlowdimlem14 28810 1smat1 33462 madjusmdetlem2 33486 |
Copyright terms: Public domain | W3C validator |