| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fznatpl1 | Structured version Visualization version GIF version | ||
| Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
| Ref | Expression |
|---|---|
| fznatpl1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 11236 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ℝ) | |
| 2 | elfzelz 13541 | . . . . . 6 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ) | |
| 3 | 2 | zred 12697 | . . . . 5 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ℝ) |
| 5 | peano2re 11408 | . . . 4 ⊢ (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ) |
| 7 | peano2re 11408 | . . . . 5 ⊢ (1 ∈ ℝ → (1 + 1) ∈ ℝ) | |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ∈ ℝ) |
| 9 | 1 | ltp1d 12172 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (1 + 1)) |
| 10 | elfzle1 13544 | . . . . . 6 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 1 ≤ 𝐼) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ 𝐼) |
| 12 | 1re 11235 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 13 | leadd1 11705 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) | |
| 14 | 12, 12, 13 | mp3an13 1454 | . . . . . 6 ⊢ (𝐼 ∈ ℝ → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) |
| 15 | 4, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1))) |
| 16 | 11, 15 | mpbid 232 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ≤ (𝐼 + 1)) |
| 17 | 1, 8, 6, 9, 16 | ltletrd 11395 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (𝐼 + 1)) |
| 18 | 1, 6, 17 | ltled 11383 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ (𝐼 + 1)) |
| 19 | elfzle2 13545 | . . . 4 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1)) | |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1)) |
| 21 | nnz 12609 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
| 23 | 22 | zred 12697 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
| 24 | leaddsub 11713 | . . . . 5 ⊢ ((𝐼 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) | |
| 25 | 12, 24 | mp3an2 1451 | . . . 4 ⊢ ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) |
| 26 | 3, 23, 25 | syl2an2 686 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≤ 𝑁 ↔ 𝐼 ≤ (𝑁 − 1))) |
| 27 | 20, 26 | mpbird 257 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ≤ 𝑁) |
| 28 | 2 | peano2zd 12700 | . . 3 ⊢ (𝐼 ∈ (1...(𝑁 − 1)) → (𝐼 + 1) ∈ ℤ) |
| 29 | 1z 12622 | . . . 4 ⊢ 1 ∈ ℤ | |
| 30 | elfz 13530 | . . . 4 ⊢ (((𝐼 + 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) | |
| 31 | 29, 30 | mp3an2 1451 | . . 3 ⊢ (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) |
| 32 | 28, 22, 31 | syl2an2 686 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁))) |
| 33 | 18, 27, 32 | mpbir2and 713 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 ≤ cle 11270 − cmin 11466 ℕcn 12240 ℤcz 12588 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: axlowdimlem10 28930 axlowdimlem14 28934 1smat1 33835 madjusmdetlem2 33859 |
| Copyright terms: Public domain | W3C validator |