MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzctr Structured version   Visualization version   GIF version

Theorem fzctr 13697
Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
fzctr (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))

Proof of Theorem fzctr
StepHypRef Expression
1 nn0ge0 12578 . 2 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
2 nn0re 12562 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 nn0addge1 12599 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑁))
42, 3mpancom 687 . . 3 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 𝑁))
5 nn0cn 12563 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
652timesd 12536 . . 3 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
74, 6breqtrrd 5194 . 2 (𝑁 ∈ ℕ0𝑁 ≤ (2 · 𝑁))
8 nn0z 12664 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
9 0zd 12651 . . 3 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
10 2z 12675 . . . 4 2 ∈ ℤ
11 zmulcl 12692 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
1210, 8, 11sylancr 586 . . 3 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℤ)
13 elfz 13573 . . 3 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁))))
148, 9, 12, 13syl3anc 1371 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁))))
151, 7, 14mpbir2and 712 1 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189  cle 11325  2c2 12348  0cn0 12553  cz 12639  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-fz 13568
This theorem is referenced by:  bcctr  27337  pcbcctr  27338  bcp1ctr  27341  bposlem1  27346  bposlem3  27348  bposlem5  27350  bposlem6  27351  chebbnd1lem1  27531
  Copyright terms: Public domain W3C validator