![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzctr | Structured version Visualization version GIF version |
Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
fzctr | ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ge0 12351 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
2 | nn0re 12335 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
3 | nn0addge1 12372 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑁)) | |
4 | 2, 3 | mpancom 685 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ (𝑁 + 𝑁)) |
5 | nn0cn 12336 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
6 | 5 | 2timesd 12309 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁)) |
7 | 4, 6 | breqtrrd 5117 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ (2 · 𝑁)) |
8 | nn0z 12436 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
9 | 0zd 12424 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℤ) | |
10 | 2z 12445 | . . . 4 ⊢ 2 ∈ ℤ | |
11 | zmulcl 12462 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ) | |
12 | 10, 8, 11 | sylancr 587 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℤ) |
13 | elfz 13338 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁 ∧ 𝑁 ≤ (2 · 𝑁)))) | |
14 | 8, 9, 12, 13 | syl3anc 1370 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁 ∧ 𝑁 ≤ (2 · 𝑁)))) |
15 | 1, 7, 14 | mpbir2and 710 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 class class class wbr 5089 (class class class)co 7329 ℝcr 10963 0cc0 10964 + caddc 10967 · cmul 10969 ≤ cle 11103 2c2 12121 ℕ0cn0 12326 ℤcz 12412 ...cfz 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-n0 12327 df-z 12413 df-fz 13333 |
This theorem is referenced by: bcctr 26521 pcbcctr 26522 bcp1ctr 26525 bposlem1 26530 bposlem3 26532 bposlem5 26534 bposlem6 26535 chebbnd1lem1 26715 |
Copyright terms: Public domain | W3C validator |