MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzctr Structured version   Visualization version   GIF version

Theorem fzctr 13461
Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
fzctr (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))

Proof of Theorem fzctr
StepHypRef Expression
1 nn0ge0 12351 . 2 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
2 nn0re 12335 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 nn0addge1 12372 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑁))
42, 3mpancom 685 . . 3 (𝑁 ∈ ℕ0𝑁 ≤ (𝑁 + 𝑁))
5 nn0cn 12336 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
652timesd 12309 . . 3 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
74, 6breqtrrd 5117 . 2 (𝑁 ∈ ℕ0𝑁 ≤ (2 · 𝑁))
8 nn0z 12436 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
9 0zd 12424 . . 3 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
10 2z 12445 . . . 4 2 ∈ ℤ
11 zmulcl 12462 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
1210, 8, 11sylancr 587 . . 3 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℤ)
13 elfz 13338 . . 3 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁))))
148, 9, 12, 13syl3anc 1370 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁𝑁 ≤ (2 · 𝑁))))
151, 7, 14mpbir2and 710 1 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2105   class class class wbr 5089  (class class class)co 7329  cr 10963  0cc0 10964   + caddc 10967   · cmul 10969  cle 11103  2c2 12121  0cn0 12326  cz 12412  ...cfz 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-n0 12327  df-z 12413  df-fz 13333
This theorem is referenced by:  bcctr  26521  pcbcctr  26522  bcp1ctr  26525  bposlem1  26530  bposlem3  26532  bposlem5  26534  bposlem6  26535  chebbnd1lem1  26715
  Copyright terms: Public domain W3C validator