Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1oaALT Structured version   Visualization version   GIF version

Theorem swapf2f1oaALT 48957
Description: Alternate proof of swapf2f1oa 48956. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1oa.b 𝐵 = (Base‘𝑆)
swapf2f1oa.x (𝜑𝑋𝐵)
swapf2f1oa.y (𝜑𝑌𝐵)
Assertion
Ref Expression
swapf2f1oaALT (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))

Proof of Theorem swapf2f1oaALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓})
21xpcomf1o 9097 . 2 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
3 swapf1f1o.o . . . . 5 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
4 swapf1f1o.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
5 swapf2f1oa.b . . . . 5 𝐵 = (Base‘𝑆)
6 swapf2f1oa.x . . . . 5 (𝜑𝑋𝐵)
7 swapf2f1oa.y . . . . 5 (𝜑𝑌𝐵)
8 swapf2f1o.h . . . . . 6 𝐻 = (Hom ‘𝑆)
98a1i 11 . . . . 5 (𝜑𝐻 = (Hom ‘𝑆))
103, 4, 5, 6, 7, 9swapf2vala 48949 . . . 4 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
11 eqid 2736 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2736 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
134, 5, 11, 12, 8, 6, 7xpchom 18221 . . . . 5 (𝜑 → (𝑋𝐻𝑌) = (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
1413mpteq1d 5235 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
1510, 14eqtrd 2776 . . 3 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
16 swapf1f1o.t . . . . 5 𝑇 = (𝐷 ×c 𝐶)
17 eqid 2736 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
18 swapf2f1o.j . . . . 5 𝐽 = (Hom ‘𝑇)
194, 5, 6elxpcbasex1 48927 . . . . . . . 8 (𝜑𝐶 ∈ V)
204, 5, 6elxpcbasex2 48929 . . . . . . . 8 (𝜑𝐷 ∈ V)
213, 4, 16, 19, 20, 5, 17swapf1f1o 48954 . . . . . . 7 (𝜑𝑂:𝐵1-1-onto→(Base‘𝑇))
22 f1of 6846 . . . . . . 7 (𝑂:𝐵1-1-onto→(Base‘𝑇) → 𝑂:𝐵⟶(Base‘𝑇))
2321, 22syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘𝑇))
2423, 6ffvelcdmd 7103 . . . . 5 (𝜑 → (𝑂𝑋) ∈ (Base‘𝑇))
2523, 7ffvelcdmd 7103 . . . . 5 (𝜑 → (𝑂𝑌) ∈ (Base‘𝑇))
2616, 17, 12, 11, 18, 24, 25xpchom 18221 . . . 4 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))))
273, 4, 5, 6swapf1a 48948 . . . . . . . 8 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
2827fveq2d 6908 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑋)) = (1st ‘⟨(2nd𝑋), (1st𝑋)⟩))
29 fvex 6917 . . . . . . . 8 (2nd𝑋) ∈ V
30 fvex 6917 . . . . . . . 8 (1st𝑋) ∈ V
3129, 30op1st 8018 . . . . . . 7 (1st ‘⟨(2nd𝑋), (1st𝑋)⟩) = (2nd𝑋)
3228, 31eqtrdi 2792 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑋)) = (2nd𝑋))
333, 4, 5, 7swapf1a 48948 . . . . . . . 8 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
3433fveq2d 6908 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑌)) = (1st ‘⟨(2nd𝑌), (1st𝑌)⟩))
35 fvex 6917 . . . . . . . 8 (2nd𝑌) ∈ V
36 fvex 6917 . . . . . . . 8 (1st𝑌) ∈ V
3735, 36op1st 8018 . . . . . . 7 (1st ‘⟨(2nd𝑌), (1st𝑌)⟩) = (2nd𝑌)
3834, 37eqtrdi 2792 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑌)) = (2nd𝑌))
3932, 38oveq12d 7447 . . . . 5 (𝜑 → ((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) = ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))
4027fveq2d 6908 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑋)) = (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩))
4129, 30op2nd 8019 . . . . . . 7 (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩) = (1st𝑋)
4240, 41eqtrdi 2792 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑋)) = (1st𝑋))
4333fveq2d 6908 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑌)) = (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩))
4435, 36op2nd 8019 . . . . . . 7 (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩) = (1st𝑌)
4543, 44eqtrdi 2792 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑌)) = (1st𝑌))
4642, 45oveq12d 7447 . . . . 5 (𝜑 → ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌))) = ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
4739, 46xpeq12d 5714 . . . 4 (𝜑 → (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4826, 47eqtrd 2776 . . 3 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4915, 13, 48f1oeq123d 6840 . 2 (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)) ↔ (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))))
502, 49mpbiri 258 1 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3479  {csn 4624  cop 4630   cuni 4905  cmpt 5223   × cxp 5681  ccnv 5682  wf 6555  1-1-ontowf1o 6558  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009  Basecbs 17243  Hom chom 17304   ×c cxpc 18209  swapFcswapf 48938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-xpc 18213  df-swapf 48939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator