Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1oaALT Structured version   Visualization version   GIF version

Theorem swapf2f1oaALT 49029
Description: Alternate proof of swapf2f1oa 49028. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1oa.b 𝐵 = (Base‘𝑆)
swapf2f1oa.x (𝜑𝑋𝐵)
swapf2f1oa.y (𝜑𝑌𝐵)
Assertion
Ref Expression
swapf2f1oaALT (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))

Proof of Theorem swapf2f1oaALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓})
21xpcomf1o 9083 . 2 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
3 swapf1f1o.o . . . . 5 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
4 swapf1f1o.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
5 swapf2f1oa.b . . . . 5 𝐵 = (Base‘𝑆)
6 swapf2f1oa.x . . . . 5 (𝜑𝑋𝐵)
7 swapf2f1oa.y . . . . 5 (𝜑𝑌𝐵)
8 swapf2f1o.h . . . . . 6 𝐻 = (Hom ‘𝑆)
98a1i 11 . . . . 5 (𝜑𝐻 = (Hom ‘𝑆))
103, 4, 5, 6, 7, 9swapf2vala 49021 . . . 4 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
11 eqid 2734 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2734 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
134, 5, 11, 12, 8, 6, 7xpchom 18196 . . . . 5 (𝜑 → (𝑋𝐻𝑌) = (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
1413mpteq1d 5217 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
1510, 14eqtrd 2769 . . 3 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
16 swapf1f1o.t . . . . 5 𝑇 = (𝐷 ×c 𝐶)
17 eqid 2734 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
18 swapf2f1o.j . . . . 5 𝐽 = (Hom ‘𝑇)
194, 5, 6elxpcbasex1 48999 . . . . . . . 8 (𝜑𝐶 ∈ V)
204, 5, 6elxpcbasex2 49001 . . . . . . . 8 (𝜑𝐷 ∈ V)
213, 4, 16, 19, 20, 5, 17swapf1f1o 49026 . . . . . . 7 (𝜑𝑂:𝐵1-1-onto→(Base‘𝑇))
22 f1of 6828 . . . . . . 7 (𝑂:𝐵1-1-onto→(Base‘𝑇) → 𝑂:𝐵⟶(Base‘𝑇))
2321, 22syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘𝑇))
2423, 6ffvelcdmd 7085 . . . . 5 (𝜑 → (𝑂𝑋) ∈ (Base‘𝑇))
2523, 7ffvelcdmd 7085 . . . . 5 (𝜑 → (𝑂𝑌) ∈ (Base‘𝑇))
2616, 17, 12, 11, 18, 24, 25xpchom 18196 . . . 4 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))))
273, 4, 5, 6swapf1a 49020 . . . . . . . 8 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
2827fveq2d 6890 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑋)) = (1st ‘⟨(2nd𝑋), (1st𝑋)⟩))
29 fvex 6899 . . . . . . . 8 (2nd𝑋) ∈ V
30 fvex 6899 . . . . . . . 8 (1st𝑋) ∈ V
3129, 30op1st 8004 . . . . . . 7 (1st ‘⟨(2nd𝑋), (1st𝑋)⟩) = (2nd𝑋)
3228, 31eqtrdi 2785 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑋)) = (2nd𝑋))
333, 4, 5, 7swapf1a 49020 . . . . . . . 8 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
3433fveq2d 6890 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑌)) = (1st ‘⟨(2nd𝑌), (1st𝑌)⟩))
35 fvex 6899 . . . . . . . 8 (2nd𝑌) ∈ V
36 fvex 6899 . . . . . . . 8 (1st𝑌) ∈ V
3735, 36op1st 8004 . . . . . . 7 (1st ‘⟨(2nd𝑌), (1st𝑌)⟩) = (2nd𝑌)
3834, 37eqtrdi 2785 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑌)) = (2nd𝑌))
3932, 38oveq12d 7431 . . . . 5 (𝜑 → ((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) = ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))
4027fveq2d 6890 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑋)) = (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩))
4129, 30op2nd 8005 . . . . . . 7 (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩) = (1st𝑋)
4240, 41eqtrdi 2785 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑋)) = (1st𝑋))
4333fveq2d 6890 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑌)) = (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩))
4435, 36op2nd 8005 . . . . . . 7 (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩) = (1st𝑌)
4543, 44eqtrdi 2785 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑌)) = (1st𝑌))
4642, 45oveq12d 7431 . . . . 5 (𝜑 → ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌))) = ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
4739, 46xpeq12d 5696 . . . 4 (𝜑 → (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4826, 47eqtrd 2769 . . 3 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4915, 13, 48f1oeq123d 6822 . 2 (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)) ↔ (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))))
502, 49mpbiri 258 1 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cop 4612   cuni 4887  cmpt 5205   × cxp 5663  ccnv 5664  wf 6537  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  Basecbs 17230  Hom chom 17285   ×c cxpc 18184  swapFcswapf 49010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-xpc 18188  df-swapf 49011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator