Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1oaALT Structured version   Visualization version   GIF version

Theorem swapf2f1oaALT 49240
Description: Alternate proof of swapf2f1oa 49239. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1oa.b 𝐵 = (Base‘𝑆)
swapf2f1oa.x (𝜑𝑋𝐵)
swapf2f1oa.y (𝜑𝑌𝐵)
Assertion
Ref Expression
swapf2f1oaALT (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))

Proof of Theorem swapf2f1oaALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓})
21xpcomf1o 9007 . 2 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
3 swapf1f1o.o . . . . 5 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
4 swapf1f1o.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
5 swapf2f1oa.b . . . . 5 𝐵 = (Base‘𝑆)
6 swapf2f1oa.x . . . . 5 (𝜑𝑋𝐵)
7 swapf2f1oa.y . . . . 5 (𝜑𝑌𝐵)
8 swapf2f1o.h . . . . . 6 𝐻 = (Hom ‘𝑆)
98a1i 11 . . . . 5 (𝜑𝐻 = (Hom ‘𝑆))
103, 4, 5, 6, 7, 9swapf2vala 49232 . . . 4 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
11 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2729 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
134, 5, 11, 12, 8, 6, 7xpchom 18117 . . . . 5 (𝜑 → (𝑋𝐻𝑌) = (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
1413mpteq1d 5192 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
1510, 14eqtrd 2764 . . 3 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
16 swapf1f1o.t . . . . 5 𝑇 = (𝐷 ×c 𝐶)
17 eqid 2729 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
18 swapf2f1o.j . . . . 5 𝐽 = (Hom ‘𝑇)
194, 5, 6elxpcbasex1 49210 . . . . . . . 8 (𝜑𝐶 ∈ V)
204, 5, 6elxpcbasex2 49212 . . . . . . . 8 (𝜑𝐷 ∈ V)
213, 4, 16, 19, 20, 5, 17swapf1f1o 49237 . . . . . . 7 (𝜑𝑂:𝐵1-1-onto→(Base‘𝑇))
22 f1of 6782 . . . . . . 7 (𝑂:𝐵1-1-onto→(Base‘𝑇) → 𝑂:𝐵⟶(Base‘𝑇))
2321, 22syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘𝑇))
2423, 6ffvelcdmd 7039 . . . . 5 (𝜑 → (𝑂𝑋) ∈ (Base‘𝑇))
2523, 7ffvelcdmd 7039 . . . . 5 (𝜑 → (𝑂𝑌) ∈ (Base‘𝑇))
2616, 17, 12, 11, 18, 24, 25xpchom 18117 . . . 4 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))))
273, 4, 5, 6swapf1a 49231 . . . . . . . 8 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
2827fveq2d 6844 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑋)) = (1st ‘⟨(2nd𝑋), (1st𝑋)⟩))
29 fvex 6853 . . . . . . . 8 (2nd𝑋) ∈ V
30 fvex 6853 . . . . . . . 8 (1st𝑋) ∈ V
3129, 30op1st 7955 . . . . . . 7 (1st ‘⟨(2nd𝑋), (1st𝑋)⟩) = (2nd𝑋)
3228, 31eqtrdi 2780 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑋)) = (2nd𝑋))
333, 4, 5, 7swapf1a 49231 . . . . . . . 8 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
3433fveq2d 6844 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑌)) = (1st ‘⟨(2nd𝑌), (1st𝑌)⟩))
35 fvex 6853 . . . . . . . 8 (2nd𝑌) ∈ V
36 fvex 6853 . . . . . . . 8 (1st𝑌) ∈ V
3735, 36op1st 7955 . . . . . . 7 (1st ‘⟨(2nd𝑌), (1st𝑌)⟩) = (2nd𝑌)
3834, 37eqtrdi 2780 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑌)) = (2nd𝑌))
3932, 38oveq12d 7387 . . . . 5 (𝜑 → ((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) = ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))
4027fveq2d 6844 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑋)) = (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩))
4129, 30op2nd 7956 . . . . . . 7 (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩) = (1st𝑋)
4240, 41eqtrdi 2780 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑋)) = (1st𝑋))
4333fveq2d 6844 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑌)) = (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩))
4435, 36op2nd 7956 . . . . . . 7 (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩) = (1st𝑌)
4543, 44eqtrdi 2780 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑌)) = (1st𝑌))
4642, 45oveq12d 7387 . . . . 5 (𝜑 → ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌))) = ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
4739, 46xpeq12d 5662 . . . 4 (𝜑 → (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4826, 47eqtrd 2764 . . 3 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4915, 13, 48f1oeq123d 6776 . 2 (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)) ↔ (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))))
502, 49mpbiri 258 1 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cop 4591   cuni 4867  cmpt 5183   × cxp 5629  ccnv 5630  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207   ×c cxpc 18105   swapF cswapf 49221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-xpc 18109  df-swapf 49222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator