Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1oaALT Structured version   Visualization version   GIF version

Theorem swapf2f1oaALT 49310
Description: Alternate proof of swapf2f1oa 49309. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1oa.b 𝐵 = (Base‘𝑆)
swapf2f1oa.x (𝜑𝑋𝐵)
swapf2f1oa.y (𝜑𝑌𝐵)
Assertion
Ref Expression
swapf2f1oaALT (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))

Proof of Theorem swapf2f1oaALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓})
21xpcomf1o 8974 . 2 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
3 swapf1f1o.o . . . . 5 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
4 swapf1f1o.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
5 swapf2f1oa.b . . . . 5 𝐵 = (Base‘𝑆)
6 swapf2f1oa.x . . . . 5 (𝜑𝑋𝐵)
7 swapf2f1oa.y . . . . 5 (𝜑𝑌𝐵)
8 swapf2f1o.h . . . . . 6 𝐻 = (Hom ‘𝑆)
98a1i 11 . . . . 5 (𝜑𝐻 = (Hom ‘𝑆))
103, 4, 5, 6, 7, 9swapf2vala 49302 . . . 4 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
11 eqid 2731 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2731 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
134, 5, 11, 12, 8, 6, 7xpchom 18081 . . . . 5 (𝜑 → (𝑋𝐻𝑌) = (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
1413mpteq1d 5176 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
1510, 14eqtrd 2766 . . 3 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
16 swapf1f1o.t . . . . 5 𝑇 = (𝐷 ×c 𝐶)
17 eqid 2731 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
18 swapf2f1o.j . . . . 5 𝐽 = (Hom ‘𝑇)
194, 5, 6elxpcbasex1 49280 . . . . . . . 8 (𝜑𝐶 ∈ V)
204, 5, 6elxpcbasex2 49282 . . . . . . . 8 (𝜑𝐷 ∈ V)
213, 4, 16, 19, 20, 5, 17swapf1f1o 49307 . . . . . . 7 (𝜑𝑂:𝐵1-1-onto→(Base‘𝑇))
22 f1of 6758 . . . . . . 7 (𝑂:𝐵1-1-onto→(Base‘𝑇) → 𝑂:𝐵⟶(Base‘𝑇))
2321, 22syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘𝑇))
2423, 6ffvelcdmd 7013 . . . . 5 (𝜑 → (𝑂𝑋) ∈ (Base‘𝑇))
2523, 7ffvelcdmd 7013 . . . . 5 (𝜑 → (𝑂𝑌) ∈ (Base‘𝑇))
2616, 17, 12, 11, 18, 24, 25xpchom 18081 . . . 4 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))))
273, 4, 5, 6swapf1a 49301 . . . . . . . 8 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
2827fveq2d 6821 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑋)) = (1st ‘⟨(2nd𝑋), (1st𝑋)⟩))
29 fvex 6830 . . . . . . . 8 (2nd𝑋) ∈ V
30 fvex 6830 . . . . . . . 8 (1st𝑋) ∈ V
3129, 30op1st 7924 . . . . . . 7 (1st ‘⟨(2nd𝑋), (1st𝑋)⟩) = (2nd𝑋)
3228, 31eqtrdi 2782 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑋)) = (2nd𝑋))
333, 4, 5, 7swapf1a 49301 . . . . . . . 8 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
3433fveq2d 6821 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑌)) = (1st ‘⟨(2nd𝑌), (1st𝑌)⟩))
35 fvex 6830 . . . . . . . 8 (2nd𝑌) ∈ V
36 fvex 6830 . . . . . . . 8 (1st𝑌) ∈ V
3735, 36op1st 7924 . . . . . . 7 (1st ‘⟨(2nd𝑌), (1st𝑌)⟩) = (2nd𝑌)
3834, 37eqtrdi 2782 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑌)) = (2nd𝑌))
3932, 38oveq12d 7359 . . . . 5 (𝜑 → ((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) = ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))
4027fveq2d 6821 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑋)) = (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩))
4129, 30op2nd 7925 . . . . . . 7 (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩) = (1st𝑋)
4240, 41eqtrdi 2782 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑋)) = (1st𝑋))
4333fveq2d 6821 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑌)) = (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩))
4435, 36op2nd 7925 . . . . . . 7 (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩) = (1st𝑌)
4543, 44eqtrdi 2782 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑌)) = (1st𝑌))
4642, 45oveq12d 7359 . . . . 5 (𝜑 → ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌))) = ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
4739, 46xpeq12d 5642 . . . 4 (𝜑 → (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4826, 47eqtrd 2766 . . 3 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4915, 13, 48f1oeq123d 6752 . 2 (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)) ↔ (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))))
502, 49mpbiri 258 1 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  cop 4577   cuni 4854  cmpt 5167   × cxp 5609  ccnv 5610  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167   ×c cxpc 18069   swapF cswapf 49291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-xpc 18073  df-swapf 49292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator