Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1oaALT Structured version   Visualization version   GIF version

Theorem swapf2f1oaALT 49439
Description: Alternate proof of swapf2f1oa 49438. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1oa.b 𝐵 = (Base‘𝑆)
swapf2f1oa.x (𝜑𝑋𝐵)
swapf2f1oa.y (𝜑𝑌𝐵)
Assertion
Ref Expression
swapf2f1oaALT (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))

Proof of Theorem swapf2f1oaALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓})
21xpcomf1o 8990 . 2 (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
3 swapf1f1o.o . . . . 5 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
4 swapf1f1o.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
5 swapf2f1oa.b . . . . 5 𝐵 = (Base‘𝑆)
6 swapf2f1oa.x . . . . 5 (𝜑𝑋𝐵)
7 swapf2f1oa.y . . . . 5 (𝜑𝑌𝐵)
8 swapf2f1o.h . . . . . 6 𝐻 = (Hom ‘𝑆)
98a1i 11 . . . . 5 (𝜑𝐻 = (Hom ‘𝑆))
103, 4, 5, 6, 7, 9swapf2vala 49431 . . . 4 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
11 eqid 2733 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2733 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
134, 5, 11, 12, 8, 6, 7xpchom 18094 . . . . 5 (𝜑 → (𝑋𝐻𝑌) = (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))))
1413mpteq1d 5185 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
1510, 14eqtrd 2768 . . 3 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}))
16 swapf1f1o.t . . . . 5 𝑇 = (𝐷 ×c 𝐶)
17 eqid 2733 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
18 swapf2f1o.j . . . . 5 𝐽 = (Hom ‘𝑇)
194, 5, 6elxpcbasex1 49409 . . . . . . . 8 (𝜑𝐶 ∈ V)
204, 5, 6elxpcbasex2 49411 . . . . . . . 8 (𝜑𝐷 ∈ V)
213, 4, 16, 19, 20, 5, 17swapf1f1o 49436 . . . . . . 7 (𝜑𝑂:𝐵1-1-onto→(Base‘𝑇))
22 f1of 6771 . . . . . . 7 (𝑂:𝐵1-1-onto→(Base‘𝑇) → 𝑂:𝐵⟶(Base‘𝑇))
2321, 22syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘𝑇))
2423, 6ffvelcdmd 7027 . . . . 5 (𝜑 → (𝑂𝑋) ∈ (Base‘𝑇))
2523, 7ffvelcdmd 7027 . . . . 5 (𝜑 → (𝑂𝑌) ∈ (Base‘𝑇))
2616, 17, 12, 11, 18, 24, 25xpchom 18094 . . . 4 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))))
273, 4, 5, 6swapf1a 49430 . . . . . . . 8 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
2827fveq2d 6835 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑋)) = (1st ‘⟨(2nd𝑋), (1st𝑋)⟩))
29 fvex 6844 . . . . . . . 8 (2nd𝑋) ∈ V
30 fvex 6844 . . . . . . . 8 (1st𝑋) ∈ V
3129, 30op1st 7938 . . . . . . 7 (1st ‘⟨(2nd𝑋), (1st𝑋)⟩) = (2nd𝑋)
3228, 31eqtrdi 2784 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑋)) = (2nd𝑋))
333, 4, 5, 7swapf1a 49430 . . . . . . . 8 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
3433fveq2d 6835 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑌)) = (1st ‘⟨(2nd𝑌), (1st𝑌)⟩))
35 fvex 6844 . . . . . . . 8 (2nd𝑌) ∈ V
36 fvex 6844 . . . . . . . 8 (1st𝑌) ∈ V
3735, 36op1st 7938 . . . . . . 7 (1st ‘⟨(2nd𝑌), (1st𝑌)⟩) = (2nd𝑌)
3834, 37eqtrdi 2784 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑌)) = (2nd𝑌))
3932, 38oveq12d 7373 . . . . 5 (𝜑 → ((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) = ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))
4027fveq2d 6835 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑋)) = (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩))
4129, 30op2nd 7939 . . . . . . 7 (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩) = (1st𝑋)
4240, 41eqtrdi 2784 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑋)) = (1st𝑋))
4333fveq2d 6835 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑌)) = (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩))
4435, 36op2nd 7939 . . . . . . 7 (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩) = (1st𝑌)
4543, 44eqtrdi 2784 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑌)) = (1st𝑌))
4642, 45oveq12d 7373 . . . . 5 (𝜑 → ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌))) = ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))
4739, 46xpeq12d 5652 . . . 4 (𝜑 → (((1st ‘(𝑂𝑋))(Hom ‘𝐷)(1st ‘(𝑂𝑌))) × ((2nd ‘(𝑂𝑋))(Hom ‘𝐶)(2nd ‘(𝑂𝑌)))) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4826, 47eqtrd 2768 . . 3 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌))))
4915, 13, 48f1oeq123d 6765 . 2 (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)) ↔ (𝑓 ∈ (((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌))) ↦ {𝑓}):(((1st𝑋)(Hom ‘𝐶)(1st𝑌)) × ((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)))–1-1-onto→(((2nd𝑋)(Hom ‘𝐷)(2nd𝑌)) × ((1st𝑋)(Hom ‘𝐶)(1st𝑌)))))
502, 49mpbiri 258 1 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Basecbs 17127  Hom chom 17179   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-xpc 18086  df-swapf 49421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator