Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnres2 Structured version   Visualization version   GIF version

Theorem cnres2 37757
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
cnres2.1 𝑋 = 𝐽
cnres2.2 𝑌 = 𝐾
Assertion
Ref Expression
cnres2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cnres2
StepHypRef Expression
1 simp3l 1202 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 simp2l 1200 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐴𝑋)
3 cnres2.1 . . . 4 𝑋 = 𝐽
43cnrest 23172 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
51, 2, 4syl2anc 584 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
6 simp1r 1199 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐾 ∈ Top)
7 cnres2.2 . . . . 5 𝑌 = 𝐾
87toptopon 22804 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
96, 8sylib 218 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐾 ∈ (TopOn‘𝑌))
10 df-ima 5651 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
11 simp3r 1203 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
123, 7cnf 23133 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
13 ffun 6691 . . . . . . 7 (𝐹:𝑋𝑌 → Fun 𝐹)
141, 12, 133syl 18 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → Fun 𝐹)
15 fdm 6697 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
161, 12, 153syl 18 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → dom 𝐹 = 𝑋)
172, 16sseqtrrd 3984 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐴 ⊆ dom 𝐹)
18 funimass4 6925 . . . . . 6 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
1914, 17, 18syl2anc 584 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2011, 19mpbird 257 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ⊆ 𝐵)
2110, 20eqsstrrid 3986 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ran (𝐹𝐴) ⊆ 𝐵)
22 simp2r 1201 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐵𝑌)
23 cnrest2 23173 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran (𝐹𝐴) ⊆ 𝐵𝐵𝑌) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵))))
249, 21, 22, 23syl3anc 1373 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵))))
255, 24mpbid 232 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914   cuni 4871  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  TopOnctopon 22797   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-map 8801  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator