Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnres2 Structured version   Visualization version   GIF version

Theorem cnres2 35921
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
cnres2.1 𝑋 = 𝐽
cnres2.2 𝑌 = 𝐾
Assertion
Ref Expression
cnres2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cnres2
StepHypRef Expression
1 simp3l 1200 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 simp2l 1198 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐴𝑋)
3 cnres2.1 . . . 4 𝑋 = 𝐽
43cnrest 22436 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
51, 2, 4syl2anc 584 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
6 simp1r 1197 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐾 ∈ Top)
7 cnres2.2 . . . . 5 𝑌 = 𝐾
87toptopon 22066 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
96, 8sylib 217 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐾 ∈ (TopOn‘𝑌))
10 df-ima 5602 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
11 simp3r 1201 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
123, 7cnf 22397 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
13 ffun 6603 . . . . . . 7 (𝐹:𝑋𝑌 → Fun 𝐹)
141, 12, 133syl 18 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → Fun 𝐹)
15 fdm 6609 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
161, 12, 153syl 18 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → dom 𝐹 = 𝑋)
172, 16sseqtrrd 3962 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐴 ⊆ dom 𝐹)
18 funimass4 6834 . . . . . 6 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
1914, 17, 18syl2anc 584 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2011, 19mpbird 256 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ⊆ 𝐵)
2110, 20eqsstrrid 3970 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ran (𝐹𝐴) ⊆ 𝐵)
22 simp2r 1199 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → 𝐵𝑌)
23 cnrest2 22437 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran (𝐹𝐴) ⊆ 𝐵𝐵𝑌) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵))))
249, 21, 22, 23syl3anc 1370 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵))))
255, 24mpbid 231 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝐵𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887   cuni 4839  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator