Proof of Theorem cnres2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3l 1201 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 2 |  | simp2l 1199 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → 𝐴 ⊆ 𝑋) | 
| 3 |  | cnres2.1 | . . . 4
⊢ 𝑋 = ∪
𝐽 | 
| 4 | 3 | cnrest 23294 | . . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) | 
| 5 | 1, 2, 4 | syl2anc 584 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) | 
| 6 |  | simp1r 1198 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → 𝐾 ∈ Top) | 
| 7 |  | cnres2.2 | . . . . 5
⊢ 𝑌 = ∪
𝐾 | 
| 8 | 7 | toptopon 22924 | . . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) | 
| 9 | 6, 8 | sylib 218 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 10 |  | df-ima 5697 | . . . 4
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | 
| 11 |  | simp3r 1202 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) | 
| 12 | 3, 7 | cnf 23255 | . . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) | 
| 13 |  | ffun 6738 | . . . . . . 7
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) | 
| 14 | 1, 12, 13 | 3syl 18 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → Fun 𝐹) | 
| 15 |  | fdm 6744 | . . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) | 
| 16 | 1, 12, 15 | 3syl 18 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → dom 𝐹 = 𝑋) | 
| 17 | 2, 16 | sseqtrrd 4020 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → 𝐴 ⊆ dom 𝐹) | 
| 18 |  | funimass4 6972 | . . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | 
| 19 | 14, 17, 18 | syl2anc 584 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | 
| 20 | 11, 19 | mpbird 257 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) | 
| 21 | 10, 20 | eqsstrrid 4022 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → ran (𝐹 ↾ 𝐴) ⊆ 𝐵) | 
| 22 |  | simp2r 1200 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → 𝐵 ⊆ 𝑌) | 
| 23 |  | cnrest2 23295 | . . 3
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran (𝐹 ↾ 𝐴) ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t 𝐵)))) | 
| 24 | 9, 21, 22, 23 | syl3anc 1372 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t 𝐵)))) | 
| 25 | 5, 24 | mpbid 232 | 1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t 𝐵))) |