Step | Hyp | Ref
| Expression |
1 | | cardidm 9957 |
. . . . 5
β’
(cardβ(cardβπ΄)) = (cardβπ΄) |
2 | | cardom 9984 |
. . . . . . 7
β’
(cardβΟ) = Ο |
3 | | simpr 484 |
. . . . . . . 8
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β Ο
βΌ π΄) |
4 | | omelon 9644 |
. . . . . . . . . 10
β’ Ο
β On |
5 | | onenon 9947 |
. . . . . . . . . 10
β’ (Ο
β On β Ο β dom card) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
β’ Ο
β dom card |
7 | | simpl 482 |
. . . . . . . . 9
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β π΄ β dom
card) |
8 | | carddom2 9975 |
. . . . . . . . 9
β’ ((Ο
β dom card β§ π΄
β dom card) β ((cardβΟ) β (cardβπ΄) β Ο βΌ π΄)) |
9 | 6, 7, 8 | sylancr 586 |
. . . . . . . 8
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
((cardβΟ) β (cardβπ΄) β Ο βΌ π΄)) |
10 | 3, 9 | mpbird 256 |
. . . . . . 7
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
(cardβΟ) β (cardβπ΄)) |
11 | 2, 10 | eqsstrrid 4032 |
. . . . . 6
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β Ο
β (cardβπ΄)) |
12 | | cardalephex 10088 |
. . . . . 6
β’ (Ο
β (cardβπ΄)
β ((cardβ(cardβπ΄)) = (cardβπ΄) β βπ₯ β On (cardβπ΄) = (β΅βπ₯))) |
13 | 11, 12 | syl 17 |
. . . . 5
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
((cardβ(cardβπ΄)) = (cardβπ΄) β βπ₯ β On (cardβπ΄) = (β΅βπ₯))) |
14 | 1, 13 | mpbii 232 |
. . . 4
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
βπ₯ β On
(cardβπ΄) =
(β΅βπ₯)) |
15 | | eqcom 2738 |
. . . . 5
β’
((cardβπ΄) =
(β΅βπ₯) β
(β΅βπ₯) =
(cardβπ΄)) |
16 | 15 | rexbii 3093 |
. . . 4
β’
(βπ₯ β On
(cardβπ΄) =
(β΅βπ₯) β
βπ₯ β On
(β΅βπ₯) =
(cardβπ΄)) |
17 | 14, 16 | sylib 217 |
. . 3
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
βπ₯ β On
(β΅βπ₯) =
(cardβπ΄)) |
18 | | alephfnon 10063 |
. . . 4
β’ β΅
Fn On |
19 | | fvelrnb 6953 |
. . . 4
β’ (β΅
Fn On β ((cardβπ΄) β ran β΅ β βπ₯ β On (β΅βπ₯) = (cardβπ΄))) |
20 | 18, 19 | ax-mp 5 |
. . 3
β’
((cardβπ΄)
β ran β΅ β βπ₯ β On (β΅βπ₯) = (cardβπ΄)) |
21 | 17, 20 | sylibr 233 |
. 2
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
(cardβπ΄) β ran
β΅) |
22 | | cardid2 9951 |
. . 3
β’ (π΄ β dom card β
(cardβπ΄) β
π΄) |
23 | 22 | adantr 480 |
. 2
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
(cardβπ΄) β
π΄) |
24 | | breq1 5152 |
. . 3
β’ (π₯ = (cardβπ΄) β (π₯ β π΄ β (cardβπ΄) β π΄)) |
25 | 24 | rspcev 3613 |
. 2
β’
(((cardβπ΄)
β ran β΅ β§ (cardβπ΄) β π΄) β βπ₯ β ran β΅π₯ β π΄) |
26 | 21, 23, 25 | syl2anc 583 |
1
β’ ((π΄ β dom card β§ Ο
βΌ π΄) β
βπ₯ β ran
β΅π₯ β π΄) |