MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infenaleph Structured version   Visualization version   GIF version

Theorem infenaleph 10089
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infenaleph ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ βˆƒπ‘₯ ∈ ran β„΅π‘₯ β‰ˆ 𝐴)
Distinct variable group:   π‘₯,𝐴

Proof of Theorem infenaleph
StepHypRef Expression
1 cardidm 9957 . . . . 5 (cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄)
2 cardom 9984 . . . . . . 7 (cardβ€˜Ο‰) = Ο‰
3 simpr 484 . . . . . . . 8 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ Ο‰ β‰Ό 𝐴)
4 omelon 9644 . . . . . . . . . 10 Ο‰ ∈ On
5 onenon 9947 . . . . . . . . . 10 (Ο‰ ∈ On β†’ Ο‰ ∈ dom card)
64, 5ax-mp 5 . . . . . . . . 9 Ο‰ ∈ dom card
7 simpl 482 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ 𝐴 ∈ dom card)
8 carddom2 9975 . . . . . . . . 9 ((Ο‰ ∈ dom card ∧ 𝐴 ∈ dom card) β†’ ((cardβ€˜Ο‰) βŠ† (cardβ€˜π΄) ↔ Ο‰ β‰Ό 𝐴))
96, 7, 8sylancr 586 . . . . . . . 8 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ ((cardβ€˜Ο‰) βŠ† (cardβ€˜π΄) ↔ Ο‰ β‰Ό 𝐴))
103, 9mpbird 256 . . . . . . 7 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (cardβ€˜Ο‰) βŠ† (cardβ€˜π΄))
112, 10eqsstrrid 4032 . . . . . 6 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ Ο‰ βŠ† (cardβ€˜π΄))
12 cardalephex 10088 . . . . . 6 (Ο‰ βŠ† (cardβ€˜π΄) β†’ ((cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄) ↔ βˆƒπ‘₯ ∈ On (cardβ€˜π΄) = (β„΅β€˜π‘₯)))
1311, 12syl 17 . . . . 5 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ ((cardβ€˜(cardβ€˜π΄)) = (cardβ€˜π΄) ↔ βˆƒπ‘₯ ∈ On (cardβ€˜π΄) = (β„΅β€˜π‘₯)))
141, 13mpbii 232 . . . 4 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ βˆƒπ‘₯ ∈ On (cardβ€˜π΄) = (β„΅β€˜π‘₯))
15 eqcom 2738 . . . . 5 ((cardβ€˜π΄) = (β„΅β€˜π‘₯) ↔ (β„΅β€˜π‘₯) = (cardβ€˜π΄))
1615rexbii 3093 . . . 4 (βˆƒπ‘₯ ∈ On (cardβ€˜π΄) = (β„΅β€˜π‘₯) ↔ βˆƒπ‘₯ ∈ On (β„΅β€˜π‘₯) = (cardβ€˜π΄))
1714, 16sylib 217 . . 3 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ βˆƒπ‘₯ ∈ On (β„΅β€˜π‘₯) = (cardβ€˜π΄))
18 alephfnon 10063 . . . 4 β„΅ Fn On
19 fvelrnb 6953 . . . 4 (β„΅ Fn On β†’ ((cardβ€˜π΄) ∈ ran β„΅ ↔ βˆƒπ‘₯ ∈ On (β„΅β€˜π‘₯) = (cardβ€˜π΄)))
2018, 19ax-mp 5 . . 3 ((cardβ€˜π΄) ∈ ran β„΅ ↔ βˆƒπ‘₯ ∈ On (β„΅β€˜π‘₯) = (cardβ€˜π΄))
2117, 20sylibr 233 . 2 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (cardβ€˜π΄) ∈ ran β„΅)
22 cardid2 9951 . . 3 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
2322adantr 480 . 2 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
24 breq1 5152 . . 3 (π‘₯ = (cardβ€˜π΄) β†’ (π‘₯ β‰ˆ 𝐴 ↔ (cardβ€˜π΄) β‰ˆ 𝐴))
2524rspcev 3613 . 2 (((cardβ€˜π΄) ∈ ran β„΅ ∧ (cardβ€˜π΄) β‰ˆ 𝐴) β†’ βˆƒπ‘₯ ∈ ran β„΅π‘₯ β‰ˆ 𝐴)
2621, 23, 25syl2anc 583 1 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ βˆƒπ‘₯ ∈ ran β„΅π‘₯ β‰ˆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069   βŠ† wss 3949   class class class wbr 5149  dom cdm 5677  ran crn 5678  Oncon0 6365   Fn wfn 6539  β€˜cfv 6544  Ο‰com 7858   β‰ˆ cen 8939   β‰Ό cdom 8940  cardccrd 9933  β„΅cale 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-oi 9508  df-har 9555  df-card 9937  df-aleph 9938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator