MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infenaleph Structured version   Visualization version   GIF version

Theorem infenaleph 10050
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infenaleph ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infenaleph
StepHypRef Expression
1 cardidm 9918 . . . . 5 (card‘(card‘𝐴)) = (card‘𝐴)
2 cardom 9945 . . . . . . 7 (card‘ω) = ω
3 simpr 484 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
4 omelon 9605 . . . . . . . . . 10 ω ∈ On
5 onenon 9908 . . . . . . . . . 10 (ω ∈ On → ω ∈ dom card)
64, 5ax-mp 5 . . . . . . . . 9 ω ∈ dom card
7 simpl 482 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
8 carddom2 9936 . . . . . . . . 9 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
96, 7, 8sylancr 587 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
103, 9mpbird 257 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴))
112, 10eqsstrrid 3988 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴))
12 cardalephex 10049 . . . . . 6 (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
1311, 12syl 17 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
141, 13mpbii 233 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))
15 eqcom 2737 . . . . 5 ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴))
1615rexbii 3077 . . . 4 (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
1714, 16sylib 218 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
18 alephfnon 10024 . . . 4 ℵ Fn On
19 fvelrnb 6923 . . . 4 (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)))
2018, 19ax-mp 5 . . 3 ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
2117, 20sylibr 234 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ)
22 cardid2 9912 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2322adantr 480 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴)
24 breq1 5112 . . 3 (𝑥 = (card‘𝐴) → (𝑥𝐴 ↔ (card‘𝐴) ≈ 𝐴))
2524rspcev 3591 . 2 (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
2621, 23, 25syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3916   class class class wbr 5109  dom cdm 5640  ran crn 5641  Oncon0 6334   Fn wfn 6508  cfv 6513  ωcom 7844  cen 8917  cdom 8918  cardccrd 9894  cale 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-oi 9469  df-har 9516  df-card 9898  df-aleph 9899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator