MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infenaleph Structured version   Visualization version   GIF version

Theorem infenaleph 9988
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infenaleph ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infenaleph
StepHypRef Expression
1 cardidm 9858 . . . . 5 (card‘(card‘𝐴)) = (card‘𝐴)
2 cardom 9885 . . . . . . 7 (card‘ω) = ω
3 simpr 484 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
4 omelon 9542 . . . . . . . . . 10 ω ∈ On
5 onenon 9848 . . . . . . . . . 10 (ω ∈ On → ω ∈ dom card)
64, 5ax-mp 5 . . . . . . . . 9 ω ∈ dom card
7 simpl 482 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
8 carddom2 9876 . . . . . . . . 9 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
96, 7, 8sylancr 587 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
103, 9mpbird 257 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴))
112, 10eqsstrrid 3969 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴))
12 cardalephex 9987 . . . . . 6 (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
1311, 12syl 17 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
141, 13mpbii 233 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))
15 eqcom 2738 . . . . 5 ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴))
1615rexbii 3079 . . . 4 (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
1714, 16sylib 218 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
18 alephfnon 9962 . . . 4 ℵ Fn On
19 fvelrnb 6888 . . . 4 (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)))
2018, 19ax-mp 5 . . 3 ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
2117, 20sylibr 234 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ)
22 cardid2 9852 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2322adantr 480 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴)
24 breq1 5096 . . 3 (𝑥 = (card‘𝐴) → (𝑥𝐴 ↔ (card‘𝐴) ≈ 𝐴))
2524rspcev 3572 . 2 (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
2621, 23, 25syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3897   class class class wbr 5093  dom cdm 5619  ran crn 5620  Oncon0 6312   Fn wfn 6482  cfv 6487  ωcom 7802  cen 8872  cdom 8873  cardccrd 9834  cale 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9402  df-har 9449  df-card 9838  df-aleph 9839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator