MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infenaleph Structured version   Visualization version   GIF version

Theorem infenaleph 9948
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infenaleph ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infenaleph
StepHypRef Expression
1 cardidm 9816 . . . . 5 (card‘(card‘𝐴)) = (card‘𝐴)
2 cardom 9843 . . . . . . 7 (card‘ω) = ω
3 simpr 485 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
4 omelon 9503 . . . . . . . . . 10 ω ∈ On
5 onenon 9806 . . . . . . . . . 10 (ω ∈ On → ω ∈ dom card)
64, 5ax-mp 5 . . . . . . . . 9 ω ∈ dom card
7 simpl 483 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
8 carddom2 9834 . . . . . . . . 9 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
96, 7, 8sylancr 587 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
103, 9mpbird 256 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴))
112, 10eqsstrrid 3981 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴))
12 cardalephex 9947 . . . . . 6 (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
1311, 12syl 17 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
141, 13mpbii 232 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))
15 eqcom 2743 . . . . 5 ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴))
1615rexbii 3093 . . . 4 (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
1714, 16sylib 217 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
18 alephfnon 9922 . . . 4 ℵ Fn On
19 fvelrnb 6886 . . . 4 (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)))
2018, 19ax-mp 5 . . 3 ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
2117, 20sylibr 233 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ)
22 cardid2 9810 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2322adantr 481 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴)
24 breq1 5095 . . 3 (𝑥 = (card‘𝐴) → (𝑥𝐴 ↔ (card‘𝐴) ≈ 𝐴))
2524rspcev 3570 . 2 (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
2621, 23, 25syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070  wss 3898   class class class wbr 5092  dom cdm 5620  ran crn 5621  Oncon0 6302   Fn wfn 6474  cfv 6479  ωcom 7780  cen 8801  cdom 8802  cardccrd 9792  cale 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-oi 9367  df-har 9414  df-card 9796  df-aleph 9797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator