Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infenaleph | Structured version Visualization version GIF version |
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infenaleph | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardidm 9717 | . . . . 5 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) | |
2 | cardom 9744 | . . . . . . 7 ⊢ (card‘ω) = ω | |
3 | simpr 485 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴) | |
4 | omelon 9404 | . . . . . . . . . 10 ⊢ ω ∈ On | |
5 | onenon 9707 | . . . . . . . . . 10 ⊢ (ω ∈ On → ω ∈ dom card) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . . 9 ⊢ ω ∈ dom card |
7 | simpl 483 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
8 | carddom2 9735 | . . . . . . . . 9 ⊢ ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) | |
9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) |
10 | 3, 9 | mpbird 256 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴)) |
11 | 2, 10 | eqsstrrid 3970 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴)) |
12 | cardalephex 9846 | . . . . . 6 ⊢ (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) |
14 | 1, 13 | mpbii 232 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)) |
15 | eqcom 2745 | . . . . 5 ⊢ ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴)) | |
16 | 15 | rexbii 3181 | . . . 4 ⊢ (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
17 | 14, 16 | sylib 217 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
18 | alephfnon 9821 | . . . 4 ⊢ ℵ Fn On | |
19 | fvelrnb 6830 | . . . 4 ⊢ (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
21 | 17, 20 | sylibr 233 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ) |
22 | cardid2 9711 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
23 | 22 | adantr 481 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴) |
24 | breq1 5077 | . . 3 ⊢ (𝑥 = (card‘𝐴) → (𝑥 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
25 | 24 | rspcev 3561 | . 2 ⊢ (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
26 | 21, 23, 25 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ran crn 5590 Oncon0 6266 Fn wfn 6428 ‘cfv 6433 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 cardccrd 9693 ℵcale 9694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-card 9697 df-aleph 9698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |