| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infenaleph | Structured version Visualization version GIF version | ||
| Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infenaleph | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardidm 9874 | . . . . 5 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) | |
| 2 | cardom 9901 | . . . . . . 7 ⊢ (card‘ω) = ω | |
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴) | |
| 4 | omelon 9561 | . . . . . . . . . 10 ⊢ ω ∈ On | |
| 5 | onenon 9864 | . . . . . . . . . 10 ⊢ (ω ∈ On → ω ∈ dom card) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . . 9 ⊢ ω ∈ dom card |
| 7 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
| 8 | carddom2 9892 | . . . . . . . . 9 ⊢ ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) |
| 10 | 3, 9 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴)) |
| 11 | 2, 10 | eqsstrrid 3977 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴)) |
| 12 | cardalephex 10003 | . . . . . 6 ⊢ (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) |
| 14 | 1, 13 | mpbii 233 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)) |
| 15 | eqcom 2736 | . . . . 5 ⊢ ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴)) | |
| 16 | 15 | rexbii 3076 | . . . 4 ⊢ (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
| 17 | 14, 16 | sylib 218 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
| 18 | alephfnon 9978 | . . . 4 ⊢ ℵ Fn On | |
| 19 | fvelrnb 6887 | . . . 4 ⊢ (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
| 21 | 17, 20 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ) |
| 22 | cardid2 9868 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 23 | 22 | adantr 480 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴) |
| 24 | breq1 5098 | . . 3 ⊢ (𝑥 = (card‘𝐴) → (𝑥 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
| 25 | 24 | rspcev 3579 | . 2 ⊢ (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
| 26 | 21, 23, 25 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 class class class wbr 5095 dom cdm 5623 ran crn 5624 Oncon0 6311 Fn wfn 6481 ‘cfv 6486 ωcom 7806 ≈ cen 8876 ≼ cdom 8877 cardccrd 9850 ℵcale 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-har 9468 df-card 9854 df-aleph 9855 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |