![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infenaleph | Structured version Visualization version GIF version |
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infenaleph | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardidm 9118 | . . . . 5 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) | |
2 | cardom 9145 | . . . . . . 7 ⊢ (card‘ω) = ω | |
3 | simpr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴) | |
4 | omelon 8840 | . . . . . . . . . 10 ⊢ ω ∈ On | |
5 | onenon 9108 | . . . . . . . . . 10 ⊢ (ω ∈ On → ω ∈ dom card) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . . 9 ⊢ ω ∈ dom card |
7 | simpl 476 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
8 | carddom2 9136 | . . . . . . . . 9 ⊢ ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) | |
9 | 6, 7, 8 | sylancr 581 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) |
10 | 3, 9 | mpbird 249 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴)) |
11 | 2, 10 | syl5eqssr 3869 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴)) |
12 | cardalephex 9246 | . . . . . 6 ⊢ (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) |
14 | 1, 13 | mpbii 225 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)) |
15 | eqcom 2785 | . . . . 5 ⊢ ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴)) | |
16 | 15 | rexbii 3224 | . . . 4 ⊢ (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
17 | 14, 16 | sylib 210 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
18 | alephfnon 9221 | . . . 4 ⊢ ℵ Fn On | |
19 | fvelrnb 6503 | . . . 4 ⊢ (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
21 | 17, 20 | sylibr 226 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ) |
22 | cardid2 9112 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
23 | 22 | adantr 474 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴) |
24 | breq1 4889 | . . 3 ⊢ (𝑥 = (card‘𝐴) → (𝑥 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
25 | 24 | rspcev 3511 | . 2 ⊢ (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
26 | 21, 23, 25 | syl2anc 579 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 ⊆ wss 3792 class class class wbr 4886 dom cdm 5355 ran crn 5356 Oncon0 5976 Fn wfn 6130 ‘cfv 6135 ωcom 7343 ≈ cen 8238 ≼ cdom 8239 cardccrd 9094 ℵcale 9095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-oi 8704 df-har 8752 df-card 9098 df-aleph 9099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |