MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infenaleph Structured version   Visualization version   GIF version

Theorem infenaleph 9247
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infenaleph ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infenaleph
StepHypRef Expression
1 cardidm 9118 . . . . 5 (card‘(card‘𝐴)) = (card‘𝐴)
2 cardom 9145 . . . . . . 7 (card‘ω) = ω
3 simpr 479 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
4 omelon 8840 . . . . . . . . . 10 ω ∈ On
5 onenon 9108 . . . . . . . . . 10 (ω ∈ On → ω ∈ dom card)
64, 5ax-mp 5 . . . . . . . . 9 ω ∈ dom card
7 simpl 476 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
8 carddom2 9136 . . . . . . . . 9 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
96, 7, 8sylancr 581 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
103, 9mpbird 249 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴))
112, 10syl5eqssr 3869 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴))
12 cardalephex 9246 . . . . . 6 (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
1311, 12syl 17 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)))
141, 13mpbii 225 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))
15 eqcom 2785 . . . . 5 ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴))
1615rexbii 3224 . . . 4 (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
1714, 16sylib 210 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
18 alephfnon 9221 . . . 4 ℵ Fn On
19 fvelrnb 6503 . . . 4 (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)))
2018, 19ax-mp 5 . . 3 ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))
2117, 20sylibr 226 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ)
22 cardid2 9112 . . 3 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2322adantr 474 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴)
24 breq1 4889 . . 3 (𝑥 = (card‘𝐴) → (𝑥𝐴 ↔ (card‘𝐴) ≈ 𝐴))
2524rspcev 3511 . 2 (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
2621, 23, 25syl2anc 579 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wrex 3091  wss 3792   class class class wbr 4886  dom cdm 5355  ran crn 5356  Oncon0 5976   Fn wfn 6130  cfv 6135  ωcom 7343  cen 8238  cdom 8239  cardccrd 9094  cale 9095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-oi 8704  df-har 8752  df-card 9098  df-aleph 9099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator