| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infenaleph | Structured version Visualization version GIF version | ||
| Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infenaleph | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardidm 9912 | . . . . 5 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) | |
| 2 | cardom 9939 | . . . . . . 7 ⊢ (card‘ω) = ω | |
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴) | |
| 4 | omelon 9599 | . . . . . . . . . 10 ⊢ ω ∈ On | |
| 5 | onenon 9902 | . . . . . . . . . 10 ⊢ (ω ∈ On → ω ∈ dom card) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . . 9 ⊢ ω ∈ dom card |
| 7 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
| 8 | carddom2 9930 | . . . . . . . . 9 ⊢ ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) |
| 10 | 3, 9 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴)) |
| 11 | 2, 10 | eqsstrrid 3986 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴)) |
| 12 | cardalephex 10043 | . . . . . 6 ⊢ (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) |
| 14 | 1, 13 | mpbii 233 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)) |
| 15 | eqcom 2736 | . . . . 5 ⊢ ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴)) | |
| 16 | 15 | rexbii 3076 | . . . 4 ⊢ (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
| 17 | 14, 16 | sylib 218 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
| 18 | alephfnon 10018 | . . . 4 ⊢ ℵ Fn On | |
| 19 | fvelrnb 6921 | . . . 4 ⊢ (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
| 21 | 17, 20 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ) |
| 22 | cardid2 9906 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 23 | 22 | adantr 480 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴) |
| 24 | breq1 5110 | . . 3 ⊢ (𝑥 = (card‘𝐴) → (𝑥 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
| 25 | 24 | rspcev 3588 | . 2 ⊢ (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
| 26 | 21, 23, 25 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ran crn 5639 Oncon0 6332 Fn wfn 6506 ‘cfv 6511 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 cardccrd 9888 ℵcale 9889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-har 9510 df-card 9892 df-aleph 9893 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |