MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm2 Structured version   Visualization version   GIF version

Theorem infxpidm2 9431
Description: The Cartesian product of an infinite set with itself is idempotent. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 9972. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxpidm2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpidm2
StepHypRef Expression
1 cardid2 9370 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8548 . . . . 5 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 xpen 8668 . . . . 5 ((𝐴 ≈ (card‘𝐴) ∧ 𝐴 ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
42, 2, 3syl2anc 584 . . . 4 (𝐴 ∈ dom card → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
54adantr 481 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
6 cardon 9361 . . . 4 (card‘𝐴) ∈ On
7 cardom 9403 . . . . 5 (card‘ω) = ω
8 omelon 9097 . . . . . . . 8 ω ∈ On
9 onenon 9366 . . . . . . . 8 (ω ∈ On → ω ∈ dom card)
108, 9ax-mp 5 . . . . . . 7 ω ∈ dom card
11 carddom2 9394 . . . . . . 7 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
1210, 11mpan 686 . . . . . 6 (𝐴 ∈ dom card → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
1312biimpar 478 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴))
147, 13eqsstrrid 4013 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴))
15 infxpen 9428 . . . 4 (((card‘𝐴) ∈ On ∧ ω ⊆ (card‘𝐴)) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴))
166, 14, 15sylancr 587 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴))
17 entr 8549 . . 3 (((𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)) ∧ ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ (card‘𝐴))
185, 16, 17syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ (card‘𝐴))
191adantr 481 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴)
20 entr 8549 . 2 (((𝐴 × 𝐴) ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2118, 19, 20syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2105  wss 3933   class class class wbr 5057   × cxp 5546  dom cdm 5548  Oncon0 6184  cfv 6348  ωcom 7569  cen 8494  cdom 8495  cardccrd 9352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-oi 8962  df-card 9356
This theorem is referenced by:  infpwfien  9476  mappwen  9526  infdjuabs  9616  infxpdom  9621  fin67  9805  infxpidm  9972  ttac  39511
  Copyright terms: Public domain W3C validator