Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infxpidm2 | Structured version Visualization version GIF version |
Description: Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10311. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infxpidm2 | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9704 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | 1 | ensymd 8766 | . . . . 5 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
3 | xpen 8901 | . . . . 5 ⊢ ((𝐴 ≈ (card‘𝐴) ∧ 𝐴 ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴))) | |
4 | 2, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ dom card → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴))) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴))) |
6 | cardon 9695 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
7 | cardom 9737 | . . . . 5 ⊢ (card‘ω) = ω | |
8 | omelon 9374 | . . . . . . . 8 ⊢ ω ∈ On | |
9 | onenon 9700 | . . . . . . . 8 ⊢ (ω ∈ On → ω ∈ dom card) | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ ω ∈ dom card |
11 | carddom2 9728 | . . . . . . 7 ⊢ ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) | |
12 | 10, 11 | mpan 687 | . . . . . 6 ⊢ (𝐴 ∈ dom card → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) |
13 | 12 | biimpar 478 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴)) |
14 | 7, 13 | eqsstrrid 3975 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴)) |
15 | infxpen 9763 | . . . 4 ⊢ (((card‘𝐴) ∈ On ∧ ω ⊆ (card‘𝐴)) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) | |
16 | 6, 14, 15 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) |
17 | entr 8767 | . . 3 ⊢ (((𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)) ∧ ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ (card‘𝐴)) | |
18 | 5, 16, 17 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ (card‘𝐴)) |
19 | 1 | adantr 481 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴) |
20 | entr 8767 | . 2 ⊢ (((𝐴 × 𝐴) ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
21 | 18, 19, 20 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 × cxp 5587 dom cdm 5589 Oncon0 6264 ‘cfv 6431 ωcom 7701 ≈ cen 8705 ≼ cdom 8706 cardccrd 9686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-oi 9239 df-card 9690 |
This theorem is referenced by: infpwfien 9811 mappwen 9861 infdjuabs 9955 infxpdom 9960 fin67 10144 infxpidm 10311 ttac 40847 |
Copyright terms: Public domain | W3C validator |