MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm2 Structured version   Visualization version   GIF version

Theorem infxpidm2 10008
Description: Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10553. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxpidm2 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (𝐴 Γ— 𝐴) β‰ˆ 𝐴)

Proof of Theorem infxpidm2
StepHypRef Expression
1 cardid2 9944 . . . . . 6 (𝐴 ∈ dom card β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
21ensymd 8997 . . . . 5 (𝐴 ∈ dom card β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
3 xpen 9136 . . . . 5 ((𝐴 β‰ˆ (cardβ€˜π΄) ∧ 𝐴 β‰ˆ (cardβ€˜π΄)) β†’ (𝐴 Γ— 𝐴) β‰ˆ ((cardβ€˜π΄) Γ— (cardβ€˜π΄)))
42, 2, 3syl2anc 584 . . . 4 (𝐴 ∈ dom card β†’ (𝐴 Γ— 𝐴) β‰ˆ ((cardβ€˜π΄) Γ— (cardβ€˜π΄)))
54adantr 481 . . 3 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (𝐴 Γ— 𝐴) β‰ˆ ((cardβ€˜π΄) Γ— (cardβ€˜π΄)))
6 cardon 9935 . . . 4 (cardβ€˜π΄) ∈ On
7 cardom 9977 . . . . 5 (cardβ€˜Ο‰) = Ο‰
8 omelon 9637 . . . . . . . 8 Ο‰ ∈ On
9 onenon 9940 . . . . . . . 8 (Ο‰ ∈ On β†’ Ο‰ ∈ dom card)
108, 9ax-mp 5 . . . . . . 7 Ο‰ ∈ dom card
11 carddom2 9968 . . . . . . 7 ((Ο‰ ∈ dom card ∧ 𝐴 ∈ dom card) β†’ ((cardβ€˜Ο‰) βŠ† (cardβ€˜π΄) ↔ Ο‰ β‰Ό 𝐴))
1210, 11mpan 688 . . . . . 6 (𝐴 ∈ dom card β†’ ((cardβ€˜Ο‰) βŠ† (cardβ€˜π΄) ↔ Ο‰ β‰Ό 𝐴))
1312biimpar 478 . . . . 5 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (cardβ€˜Ο‰) βŠ† (cardβ€˜π΄))
147, 13eqsstrrid 4030 . . . 4 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ Ο‰ βŠ† (cardβ€˜π΄))
15 infxpen 10005 . . . 4 (((cardβ€˜π΄) ∈ On ∧ Ο‰ βŠ† (cardβ€˜π΄)) β†’ ((cardβ€˜π΄) Γ— (cardβ€˜π΄)) β‰ˆ (cardβ€˜π΄))
166, 14, 15sylancr 587 . . 3 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ ((cardβ€˜π΄) Γ— (cardβ€˜π΄)) β‰ˆ (cardβ€˜π΄))
17 entr 8998 . . 3 (((𝐴 Γ— 𝐴) β‰ˆ ((cardβ€˜π΄) Γ— (cardβ€˜π΄)) ∧ ((cardβ€˜π΄) Γ— (cardβ€˜π΄)) β‰ˆ (cardβ€˜π΄)) β†’ (𝐴 Γ— 𝐴) β‰ˆ (cardβ€˜π΄))
185, 16, 17syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (𝐴 Γ— 𝐴) β‰ˆ (cardβ€˜π΄))
191adantr 481 . 2 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
20 entr 8998 . 2 (((𝐴 Γ— 𝐴) β‰ˆ (cardβ€˜π΄) ∧ (cardβ€˜π΄) β‰ˆ 𝐴) β†’ (𝐴 Γ— 𝐴) β‰ˆ 𝐴)
2118, 19, 20syl2anc 584 1 ((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ (𝐴 Γ— 𝐴) β‰ˆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∈ wcel 2106   βŠ† wss 3947   class class class wbr 5147   Γ— cxp 5673  dom cdm 5675  Oncon0 6361  β€˜cfv 6540  Ο‰com 7851   β‰ˆ cen 8932   β‰Ό cdom 8933  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930
This theorem is referenced by:  infpwfien  10053  mappwen  10103  infdjuabs  10197  infxpdom  10202  fin67  10386  infxpidm  10553  ttac  41760
  Copyright terms: Public domain W3C validator