| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infxpidm2 | Structured version Visualization version GIF version | ||
| Description: Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10453. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infxpidm2 | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9846 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 2 | 1 | ensymd 8927 | . . . . 5 ⊢ (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴)) |
| 3 | xpen 9053 | . . . . 5 ⊢ ((𝐴 ≈ (card‘𝐴) ∧ 𝐴 ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴))) | |
| 4 | 2, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ dom card → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴))) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴))) |
| 6 | cardon 9837 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 7 | cardom 9879 | . . . . 5 ⊢ (card‘ω) = ω | |
| 8 | omelon 9536 | . . . . . . . 8 ⊢ ω ∈ On | |
| 9 | onenon 9842 | . . . . . . . 8 ⊢ (ω ∈ On → ω ∈ dom card) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ ω ∈ dom card |
| 11 | carddom2 9870 | . . . . . . 7 ⊢ ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) | |
| 12 | 10, 11 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ dom card → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) |
| 13 | 12 | biimpar 477 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴)) |
| 14 | 7, 13 | eqsstrrid 3974 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴)) |
| 15 | infxpen 9905 | . . . 4 ⊢ (((card‘𝐴) ∈ On ∧ ω ⊆ (card‘𝐴)) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) | |
| 16 | 6, 14, 15 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) |
| 17 | entr 8928 | . . 3 ⊢ (((𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)) ∧ ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ (card‘𝐴)) | |
| 18 | 5, 16, 17 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ (card‘𝐴)) |
| 19 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴) |
| 20 | entr 8928 | . 2 ⊢ (((𝐴 × 𝐴) ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
| 21 | 18, 19, 20 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 × cxp 5614 dom cdm 5616 Oncon0 6306 ‘cfv 6481 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-card 9832 |
| This theorem is referenced by: infpwfien 9953 mappwen 10003 infdjuabs 10096 infxpdom 10101 fin67 10286 infxpidm 10453 ttac 43075 |
| Copyright terms: Public domain | W3C validator |