![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpidm2 | Structured version Visualization version GIF version |
Description: Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10553. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infxpidm2 | β’ ((π΄ β dom card β§ Ο βΌ π΄) β (π΄ Γ π΄) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9944 | . . . . . 6 β’ (π΄ β dom card β (cardβπ΄) β π΄) | |
2 | 1 | ensymd 8997 | . . . . 5 β’ (π΄ β dom card β π΄ β (cardβπ΄)) |
3 | xpen 9136 | . . . . 5 β’ ((π΄ β (cardβπ΄) β§ π΄ β (cardβπ΄)) β (π΄ Γ π΄) β ((cardβπ΄) Γ (cardβπ΄))) | |
4 | 2, 2, 3 | syl2anc 584 | . . . 4 β’ (π΄ β dom card β (π΄ Γ π΄) β ((cardβπ΄) Γ (cardβπ΄))) |
5 | 4 | adantr 481 | . . 3 β’ ((π΄ β dom card β§ Ο βΌ π΄) β (π΄ Γ π΄) β ((cardβπ΄) Γ (cardβπ΄))) |
6 | cardon 9935 | . . . 4 β’ (cardβπ΄) β On | |
7 | cardom 9977 | . . . . 5 β’ (cardβΟ) = Ο | |
8 | omelon 9637 | . . . . . . . 8 β’ Ο β On | |
9 | onenon 9940 | . . . . . . . 8 β’ (Ο β On β Ο β dom card) | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 β’ Ο β dom card |
11 | carddom2 9968 | . . . . . . 7 β’ ((Ο β dom card β§ π΄ β dom card) β ((cardβΟ) β (cardβπ΄) β Ο βΌ π΄)) | |
12 | 10, 11 | mpan 688 | . . . . . 6 β’ (π΄ β dom card β ((cardβΟ) β (cardβπ΄) β Ο βΌ π΄)) |
13 | 12 | biimpar 478 | . . . . 5 β’ ((π΄ β dom card β§ Ο βΌ π΄) β (cardβΟ) β (cardβπ΄)) |
14 | 7, 13 | eqsstrrid 4030 | . . . 4 β’ ((π΄ β dom card β§ Ο βΌ π΄) β Ο β (cardβπ΄)) |
15 | infxpen 10005 | . . . 4 β’ (((cardβπ΄) β On β§ Ο β (cardβπ΄)) β ((cardβπ΄) Γ (cardβπ΄)) β (cardβπ΄)) | |
16 | 6, 14, 15 | sylancr 587 | . . 3 β’ ((π΄ β dom card β§ Ο βΌ π΄) β ((cardβπ΄) Γ (cardβπ΄)) β (cardβπ΄)) |
17 | entr 8998 | . . 3 β’ (((π΄ Γ π΄) β ((cardβπ΄) Γ (cardβπ΄)) β§ ((cardβπ΄) Γ (cardβπ΄)) β (cardβπ΄)) β (π΄ Γ π΄) β (cardβπ΄)) | |
18 | 5, 16, 17 | syl2anc 584 | . 2 β’ ((π΄ β dom card β§ Ο βΌ π΄) β (π΄ Γ π΄) β (cardβπ΄)) |
19 | 1 | adantr 481 | . 2 β’ ((π΄ β dom card β§ Ο βΌ π΄) β (cardβπ΄) β π΄) |
20 | entr 8998 | . 2 β’ (((π΄ Γ π΄) β (cardβπ΄) β§ (cardβπ΄) β π΄) β (π΄ Γ π΄) β π΄) | |
21 | 18, 19, 20 | syl2anc 584 | 1 β’ ((π΄ β dom card β§ Ο βΌ π΄) β (π΄ Γ π΄) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 β wss 3947 class class class wbr 5147 Γ cxp 5673 dom cdm 5675 Oncon0 6361 βcfv 6540 Οcom 7851 β cen 8932 βΌ cdom 8933 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-oi 9501 df-card 9930 |
This theorem is referenced by: infpwfien 10053 mappwen 10103 infdjuabs 10197 infxpdom 10202 fin67 10386 infxpidm 10553 ttac 41760 |
Copyright terms: Public domain | W3C validator |