MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm2 Structured version   Visualization version   GIF version

Theorem infxpidm2 9917
Description: Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10462. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxpidm2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpidm2
StepHypRef Expression
1 cardid2 9855 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
21ensymd 8936 . . . . 5 (𝐴 ∈ dom card → 𝐴 ≈ (card‘𝐴))
3 xpen 9062 . . . . 5 ((𝐴 ≈ (card‘𝐴) ∧ 𝐴 ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
42, 2, 3syl2anc 584 . . . 4 (𝐴 ∈ dom card → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
54adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)))
6 cardon 9846 . . . 4 (card‘𝐴) ∈ On
7 cardom 9888 . . . . 5 (card‘ω) = ω
8 omelon 9545 . . . . . . . 8 ω ∈ On
9 onenon 9851 . . . . . . . 8 (ω ∈ On → ω ∈ dom card)
108, 9ax-mp 5 . . . . . . 7 ω ∈ dom card
11 carddom2 9879 . . . . . . 7 ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
1210, 11mpan 690 . . . . . 6 (𝐴 ∈ dom card → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴))
1312biimpar 477 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴))
147, 13eqsstrrid 3970 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴))
15 infxpen 9914 . . . 4 (((card‘𝐴) ∈ On ∧ ω ⊆ (card‘𝐴)) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴))
166, 14, 15sylancr 587 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴))
17 entr 8937 . . 3 (((𝐴 × 𝐴) ≈ ((card‘𝐴) × (card‘𝐴)) ∧ ((card‘𝐴) × (card‘𝐴)) ≈ (card‘𝐴)) → (𝐴 × 𝐴) ≈ (card‘𝐴))
185, 16, 17syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ (card‘𝐴))
191adantr 480 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴)
20 entr 8937 . 2 (((𝐴 × 𝐴) ≈ (card‘𝐴) ∧ (card‘𝐴) ≈ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2118, 19, 20syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wss 3898   class class class wbr 5095   × cxp 5619  dom cdm 5621  Oncon0 6313  cfv 6488  ωcom 7804  cen 8874  cdom 8875  cardccrd 9837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-oi 9405  df-card 9841
This theorem is referenced by:  infpwfien  9962  mappwen  10012  infdjuabs  10105  infxpdom  10110  fin67  10295  infxpidm  10462  ttac  43156
  Copyright terms: Public domain W3C validator