| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12256 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 12281 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 12198 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 8c8 12247 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 |
| This theorem is referenced by: 9nn0 12466 9p1e10 12651 10nn 12665 3dvdsdec 16302 19prm 17088 prmlem2 17090 37prm 17091 43prm 17092 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem3 17109 tsetndx 17315 tsetid 17316 tsetndxnn 17317 topgrpstr 17324 otpsstr 17339 odrngstr 17366 imasvalstr 17414 ipostr 18488 cnfldstr 21266 cnfldstrOLD 21281 psrvalstr 21825 2logb9irr 26705 sqrt2cxp2logb9e3 26709 mcubic 26757 log2cnv 26854 log2tlbnd 26855 log2ublem2 26857 log2ub 26859 bposlem7 27201 ex-cnv 30366 ex-dm 30368 ex-gcd 30386 ex-lcm 30387 ex-prmo 30388 idlsrgstr 33473 hgt750lem2 34643 lcmineqlem23 42039 3lexlogpow2ineq1 42046 3lexlogpow2ineq2 42047 9ne0 42252 rmydioph 43003 deccarry 47312 257prm 47562 fmtno4nprmfac193 47575 139prmALT 47597 127prm 47600 8exp8mod9 47737 9fppr8 47738 nfermltl8rev 47743 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 bgoldbtbndlem1 47806 tgblthelfgott 47816 |
| Copyright terms: Public domain | W3C validator |