MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9nn Structured version   Visualization version   GIF version

Theorem 9nn 12260
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.)
Assertion
Ref Expression
9nn 9 ∈ ℕ

Proof of Theorem 9nn
StepHypRef Expression
1 df-9 12232 . 2 9 = (8 + 1)
2 8nn 12257 . . 3 8 ∈ ℕ
3 peano2nn 12174 . . 3 (8 ∈ ℕ → (8 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (8 + 1) ∈ ℕ
51, 4eqeltri 2824 1 9 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7369  1c1 11045   + caddc 11047  cn 12162  8c8 12223  9c9 12224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-1cn 11102
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232
This theorem is referenced by:  9nn0  12442  9p1e10  12627  10nn  12641  3dvdsdec  16278  19prm  17064  prmlem2  17066  37prm  17067  43prm  17068  83prm  17069  139prm  17070  163prm  17071  317prm  17072  631prm  17073  1259lem1  17077  1259lem2  17078  1259lem3  17079  1259lem4  17080  1259lem5  17081  2503lem3  17085  tsetndx  17291  tsetid  17292  tsetndxnn  17293  topgrpstr  17300  otpsstr  17315  odrngstr  17342  imasvalstr  17390  ipostr  18464  cnfldstr  21242  cnfldstrOLD  21257  psrvalstr  21801  2logb9irr  26681  sqrt2cxp2logb9e3  26685  mcubic  26733  log2cnv  26830  log2tlbnd  26831  log2ublem2  26833  log2ub  26835  bposlem7  27177  ex-cnv  30339  ex-dm  30341  ex-gcd  30359  ex-lcm  30360  ex-prmo  30361  idlsrgstr  33446  hgt750lem2  34616  lcmineqlem23  42012  3lexlogpow2ineq1  42019  3lexlogpow2ineq2  42020  9ne0  42225  rmydioph  42976  deccarry  47285  257prm  47535  fmtno4nprmfac193  47548  139prmALT  47570  127prm  47573  8exp8mod9  47710  9fppr8  47711  nfermltl8rev  47716  wtgoldbnnsum4prm  47776  bgoldbnnsum3prm  47778  bgoldbtbndlem1  47779  tgblthelfgott  47789
  Copyright terms: Public domain W3C validator