| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12308 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 12333 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 12250 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 1c1 11128 + caddc 11130 ℕcn 12238 8c8 12299 9c9 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 |
| This theorem is referenced by: 9nn0 12523 9p1e10 12708 10nn 12722 3dvdsdec 16349 19prm 17135 prmlem2 17137 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 2503lem3 17156 tsetndx 17364 tsetid 17365 tsetndxnn 17366 topgrpstr 17373 otpsstr 17388 odrngstr 17415 imasvalstr 17463 ipostr 18537 cnfldstr 21315 cnfldstrOLD 21330 psrvalstr 21874 2logb9irr 26755 sqrt2cxp2logb9e3 26759 mcubic 26807 log2cnv 26904 log2tlbnd 26905 log2ublem2 26907 log2ub 26909 bposlem7 27251 ex-cnv 30364 ex-dm 30366 ex-gcd 30384 ex-lcm 30385 ex-prmo 30386 idlsrgstr 33463 hgt750lem2 34630 lcmineqlem23 42010 3lexlogpow2ineq1 42017 3lexlogpow2ineq2 42018 9ne0 42261 rmydioph 42985 deccarry 47288 257prm 47523 fmtno4nprmfac193 47536 139prmALT 47558 127prm 47561 8exp8mod9 47698 9fppr8 47699 nfermltl8rev 47704 wtgoldbnnsum4prm 47764 bgoldbnnsum3prm 47766 bgoldbtbndlem1 47767 tgblthelfgott 47777 |
| Copyright terms: Public domain | W3C validator |