Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12043 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 12068 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 11985 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 8c8 12034 9c9 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 |
This theorem is referenced by: 9nn0 12257 9p1e10 12439 10nn 12453 3dvdsdec 16041 19prm 16819 prmlem2 16821 37prm 16822 43prm 16823 83prm 16824 139prm 16825 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 2503lem3 16840 tsetndx 17062 tsetid 17063 tsetndxnn 17064 topgrpstr 17071 otpsstr 17086 odrngstr 17113 imasvalstr 17162 ipostr 18247 oppgtsetOLD 18959 mgptsetOLD 19731 sratsetOLD 20453 cnfldstr 20599 psrvalstr 21119 eltpsgOLD 22093 indistpsALTOLD 22164 2logb9irr 25945 sqrt2cxp2logb9e3 25949 mcubic 25997 log2cnv 26094 log2tlbnd 26095 log2ublem2 26097 log2ub 26099 bposlem7 26438 ex-cnv 28801 ex-dm 28803 ex-gcd 28821 ex-lcm 28822 ex-prmo 28823 idlsrgstr 31647 hgt750lem2 32632 lcmineqlem23 40059 3lexlogpow2ineq1 40066 3lexlogpow2ineq2 40067 rmydioph 40836 deccarry 44803 257prm 45013 fmtno4nprmfac193 45026 139prmALT 45048 127prm 45051 8exp8mod9 45188 9fppr8 45189 nfermltl8rev 45194 wtgoldbnnsum4prm 45254 bgoldbnnsum3prm 45256 bgoldbtbndlem1 45257 tgblthelfgott 45267 |
Copyright terms: Public domain | W3C validator |