| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12232 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 12257 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 12174 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 ℕcn 12162 8c8 12223 9c9 12224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 |
| This theorem is referenced by: 9nn0 12442 9p1e10 12627 10nn 12641 3dvdsdec 16278 19prm 17064 prmlem2 17066 37prm 17067 43prm 17068 83prm 17069 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem3 17085 tsetndx 17291 tsetid 17292 tsetndxnn 17293 topgrpstr 17300 otpsstr 17315 odrngstr 17342 imasvalstr 17390 ipostr 18464 cnfldstr 21242 cnfldstrOLD 21257 psrvalstr 21801 2logb9irr 26681 sqrt2cxp2logb9e3 26685 mcubic 26733 log2cnv 26830 log2tlbnd 26831 log2ublem2 26833 log2ub 26835 bposlem7 27177 ex-cnv 30339 ex-dm 30341 ex-gcd 30359 ex-lcm 30360 ex-prmo 30361 idlsrgstr 33446 hgt750lem2 34616 lcmineqlem23 42012 3lexlogpow2ineq1 42019 3lexlogpow2ineq2 42020 9ne0 42225 rmydioph 42976 deccarry 47285 257prm 47535 fmtno4nprmfac193 47548 139prmALT 47570 127prm 47573 8exp8mod9 47710 9fppr8 47711 nfermltl8rev 47716 wtgoldbnnsum4prm 47776 bgoldbnnsum3prm 47778 bgoldbtbndlem1 47779 tgblthelfgott 47789 |
| Copyright terms: Public domain | W3C validator |