| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12263 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 12288 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 12205 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 8c8 12254 9c9 12255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 |
| This theorem is referenced by: 9nn0 12473 9p1e10 12658 10nn 12672 3dvdsdec 16309 19prm 17095 prmlem2 17097 37prm 17098 43prm 17099 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem3 17116 tsetndx 17322 tsetid 17323 tsetndxnn 17324 topgrpstr 17331 otpsstr 17346 odrngstr 17373 imasvalstr 17421 ipostr 18495 cnfldstr 21273 cnfldstrOLD 21288 psrvalstr 21832 2logb9irr 26712 sqrt2cxp2logb9e3 26716 mcubic 26764 log2cnv 26861 log2tlbnd 26862 log2ublem2 26864 log2ub 26866 bposlem7 27208 ex-cnv 30373 ex-dm 30375 ex-gcd 30393 ex-lcm 30394 ex-prmo 30395 idlsrgstr 33480 hgt750lem2 34650 lcmineqlem23 42046 3lexlogpow2ineq1 42053 3lexlogpow2ineq2 42054 9ne0 42259 rmydioph 43010 deccarry 47316 257prm 47566 fmtno4nprmfac193 47579 139prmALT 47601 127prm 47604 8exp8mod9 47741 9fppr8 47742 nfermltl8rev 47747 wtgoldbnnsum4prm 47807 bgoldbnnsum3prm 47809 bgoldbtbndlem1 47810 tgblthelfgott 47820 |
| Copyright terms: Public domain | W3C validator |