| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12216 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 12241 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 12158 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 ℕcn 12146 8c8 12207 9c9 12208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 |
| This theorem is referenced by: 9nn0 12426 9p1e10 12611 10nn 12625 3dvdsdec 16261 19prm 17047 prmlem2 17049 37prm 17050 43prm 17051 83prm 17052 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 2503lem3 17068 tsetndx 17274 tsetid 17275 tsetndxnn 17276 topgrpstr 17283 otpsstr 17298 odrngstr 17325 imasvalstr 17373 ipostr 18453 cnfldstr 21281 cnfldstrOLD 21296 psrvalstr 21841 2logb9irr 26721 sqrt2cxp2logb9e3 26725 mcubic 26773 log2cnv 26870 log2tlbnd 26871 log2ublem2 26873 log2ub 26875 bposlem7 27217 ex-cnv 30399 ex-dm 30401 ex-gcd 30419 ex-lcm 30420 ex-prmo 30421 idlsrgstr 33452 hgt750lem2 34622 lcmineqlem23 42027 3lexlogpow2ineq1 42034 3lexlogpow2ineq2 42035 9ne0 42240 rmydioph 42990 deccarry 47299 257prm 47549 fmtno4nprmfac193 47562 139prmALT 47584 127prm 47587 8exp8mod9 47724 9fppr8 47725 nfermltl8rev 47730 wtgoldbnnsum4prm 47790 bgoldbnnsum3prm 47792 bgoldbtbndlem1 47793 tgblthelfgott 47803 |
| Copyright terms: Public domain | W3C validator |