Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 11973 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 11998 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 11915 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 1c1 10803 + caddc 10805 ℕcn 11903 8c8 11964 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: 9nn0 12187 9p1e10 12368 10nn 12382 3dvdsdec 15969 19prm 16747 prmlem2 16749 37prm 16750 43prm 16751 83prm 16752 139prm 16753 163prm 16754 317prm 16755 631prm 16756 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem3 16768 tsetndx 16987 tsetid 16988 tsetndxnn 16989 topgrpstr 16995 otpsstr 17009 odrngstr 17032 imasvalstr 17079 ipostr 18162 oppgtsetOLD 18874 mgptsetOLD 19646 sratsetOLD 20366 cnfldstr 20512 psrvalstr 21029 eltpsgOLD 22001 indistpsALTOLD 22072 2logb9irr 25850 sqrt2cxp2logb9e3 25854 mcubic 25902 log2cnv 25999 log2tlbnd 26000 log2ublem2 26002 log2ub 26004 bposlem7 26343 ex-cnv 28702 ex-dm 28704 ex-gcd 28722 ex-lcm 28723 ex-prmo 28724 idlsrgstr 31549 hgt750lem2 32532 lcmineqlem23 39987 3lexlogpow2ineq1 39994 3lexlogpow2ineq2 39995 rmydioph 40752 deccarry 44691 257prm 44901 fmtno4nprmfac193 44914 139prmALT 44936 127prm 44939 8exp8mod9 45076 9fppr8 45077 nfermltl8rev 45082 wtgoldbnnsum4prm 45142 bgoldbnnsum3prm 45144 bgoldbtbndlem1 45145 tgblthelfgott 45155 |
Copyright terms: Public domain | W3C validator |