Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 11749 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 11774 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 11691 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2848 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 (class class class)co 7155 1c1 10581 + caddc 10583 ℕcn 11679 8c8 11740 9c9 11741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 ax-1cn 10638 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 |
This theorem is referenced by: 9nn0 11963 9p1e10 12144 10nn 12158 3dvdsdec 15738 19prm 16514 prmlem2 16516 37prm 16517 43prm 16518 83prm 16519 139prm 16520 163prm 16521 317prm 16522 631prm 16523 1259lem1 16527 1259lem2 16528 1259lem3 16529 1259lem4 16530 1259lem5 16531 2503lem3 16535 tsetndx 16722 tsetid 16723 topgrpstr 16724 resstset 16728 otpsstr 16731 odrngstr 16742 imasvalstr 16788 ipostr 17834 oppgtset 18552 mgptset 19320 sratset 20029 cnfldstr 20173 psrvalstr 20683 eltpsg 21648 indistpsALT 21718 2logb9irr 25485 sqrt2cxp2logb9e3 25489 mcubic 25537 log2cnv 25634 log2tlbnd 25635 log2ublem2 25637 log2ub 25639 bposlem7 25978 ex-cnv 28326 ex-dm 28328 ex-gcd 28346 ex-lcm 28347 ex-prmo 28348 idlsrgstr 31172 hgt750lem2 32155 lcmineqlem23 39644 3lexlogpow2ineq1 39651 3lexlogpow2ineq2 39652 rmydioph 40356 deccarry 44264 257prm 44474 fmtno4nprmfac193 44487 139prmALT 44509 127prm 44512 8exp8mod9 44649 9fppr8 44650 nfermltl8rev 44655 wtgoldbnnsum4prm 44715 bgoldbnnsum3prm 44717 bgoldbtbndlem1 44718 tgblthelfgott 44728 |
Copyright terms: Public domain | W3C validator |