![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12333 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 12358 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 12275 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 1c1 11153 + caddc 11155 ℕcn 12263 8c8 12324 9c9 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 |
This theorem is referenced by: 9nn0 12547 9p1e10 12732 10nn 12746 3dvdsdec 16365 19prm 17151 prmlem2 17153 37prm 17154 43prm 17155 83prm 17156 139prm 17157 163prm 17158 317prm 17159 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 2503lem3 17172 tsetndx 17397 tsetid 17398 tsetndxnn 17399 topgrpstr 17406 otpsstr 17421 odrngstr 17448 imasvalstr 17497 ipostr 18586 oppgtsetOLD 19385 mgptsetOLD 20162 sratsetOLD 21206 cnfldstr 21383 cnfldstrOLD 21398 psrvalstr 21953 eltpsgOLD 22965 indistpsALTOLD 23036 2logb9irr 26852 sqrt2cxp2logb9e3 26856 mcubic 26904 log2cnv 27001 log2tlbnd 27002 log2ublem2 27004 log2ub 27006 bposlem7 27348 ex-cnv 30465 ex-dm 30467 ex-gcd 30485 ex-lcm 30486 ex-prmo 30487 idlsrgstr 33509 hgt750lem2 34645 lcmineqlem23 42032 3lexlogpow2ineq1 42039 3lexlogpow2ineq2 42040 rmydioph 43002 deccarry 47260 257prm 47485 fmtno4nprmfac193 47498 139prmALT 47520 127prm 47523 8exp8mod9 47660 9fppr8 47661 nfermltl8rev 47666 wtgoldbnnsum4prm 47726 bgoldbnnsum3prm 47728 bgoldbtbndlem1 47729 tgblthelfgott 47739 |
Copyright terms: Public domain | W3C validator |