| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12190 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 12215 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 12132 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 ℕcn 12120 8c8 12181 9c9 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 |
| This theorem is referenced by: 9nn0 12400 9p1e10 12585 10nn 12599 3dvdsdec 16238 19prm 17024 prmlem2 17026 37prm 17027 43prm 17028 83prm 17029 139prm 17030 163prm 17031 317prm 17032 631prm 17033 1259lem1 17037 1259lem2 17038 1259lem3 17039 1259lem4 17040 1259lem5 17041 2503lem3 17045 tsetndx 17251 tsetid 17252 tsetndxnn 17253 topgrpstr 17260 otpsstr 17275 odrngstr 17302 imasvalstr 17350 ipostr 18430 cnfldstr 21288 cnfldstrOLD 21303 psrvalstr 21848 2logb9irr 26727 sqrt2cxp2logb9e3 26731 mcubic 26779 log2cnv 26876 log2tlbnd 26877 log2ublem2 26879 log2ub 26881 bposlem7 27223 ex-cnv 30409 ex-dm 30411 ex-gcd 30429 ex-lcm 30430 ex-prmo 30431 idlsrgstr 33459 hgt750lem2 34657 lcmineqlem23 42084 3lexlogpow2ineq1 42091 3lexlogpow2ineq2 42092 9ne0 42297 rmydioph 43047 deccarry 47342 257prm 47592 fmtno4nprmfac193 47605 139prmALT 47627 127prm 47630 8exp8mod9 47767 9fppr8 47768 nfermltl8rev 47773 wtgoldbnnsum4prm 47833 bgoldbnnsum3prm 47835 bgoldbtbndlem1 47836 tgblthelfgott 47846 |
| Copyright terms: Public domain | W3C validator |