![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn | ⊢ 9 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12363 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8nn 12388 | . . 3 ⊢ 8 ∈ ℕ | |
3 | peano2nn 12305 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 9 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 1c1 11185 + caddc 11187 ℕcn 12293 8c8 12354 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 |
This theorem is referenced by: 9nn0 12577 9p1e10 12760 10nn 12774 3dvdsdec 16380 19prm 17165 prmlem2 17167 37prm 17168 43prm 17169 83prm 17170 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem3 17186 tsetndx 17411 tsetid 17412 tsetndxnn 17413 topgrpstr 17420 otpsstr 17435 odrngstr 17462 imasvalstr 17511 ipostr 18599 oppgtsetOLD 19395 mgptsetOLD 20172 sratsetOLD 21212 cnfldstr 21389 cnfldstrOLD 21404 psrvalstr 21959 eltpsgOLD 22971 indistpsALTOLD 23042 2logb9irr 26856 sqrt2cxp2logb9e3 26860 mcubic 26908 log2cnv 27005 log2tlbnd 27006 log2ublem2 27008 log2ub 27010 bposlem7 27352 ex-cnv 30469 ex-dm 30471 ex-gcd 30489 ex-lcm 30490 ex-prmo 30491 idlsrgstr 33495 hgt750lem2 34629 lcmineqlem23 42008 3lexlogpow2ineq1 42015 3lexlogpow2ineq2 42016 rmydioph 42971 deccarry 47226 257prm 47435 fmtno4nprmfac193 47448 139prmALT 47470 127prm 47473 8exp8mod9 47610 9fppr8 47611 nfermltl8rev 47616 wtgoldbnnsum4prm 47676 bgoldbnnsum3prm 47678 bgoldbtbndlem1 47679 tgblthelfgott 47689 |
Copyright terms: Public domain | W3C validator |