| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn | Structured version Visualization version GIF version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn | ⊢ 9 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12206 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8nn 12231 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | peano2nn 12148 | . . 3 ⊢ (8 ∈ ℕ → (8 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (8 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 9 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℕcn 12136 8c8 12197 9c9 12198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 |
| This theorem is referenced by: 9nn0 12416 9p1e10 12600 10nn 12614 3dvdsdec 16250 19prm 17036 prmlem2 17038 37prm 17039 43prm 17040 83prm 17041 139prm 17042 163prm 17043 317prm 17044 631prm 17045 1259lem1 17049 1259lem2 17050 1259lem3 17051 1259lem4 17052 1259lem5 17053 2503lem3 17057 tsetndx 17263 tsetid 17264 tsetndxnn 17265 topgrpstr 17272 otpsstr 17287 odrngstr 17314 imasvalstr 17362 ipostr 18443 cnfldstr 21302 cnfldstrOLD 21317 psrvalstr 21863 2logb9irr 26752 sqrt2cxp2logb9e3 26756 mcubic 26804 log2cnv 26901 log2tlbnd 26902 log2ublem2 26904 log2ub 26906 bposlem7 27248 ex-cnv 30438 ex-dm 30440 ex-gcd 30458 ex-lcm 30459 ex-prmo 30460 idlsrgstr 33511 hgt750lem2 34737 lcmineqlem23 42217 3lexlogpow2ineq1 42224 3lexlogpow2ineq2 42225 9ne0 42434 rmydioph 43171 deccarry 47473 257prm 47723 fmtno4nprmfac193 47736 139prmALT 47758 127prm 47761 8exp8mod9 47898 9fppr8 47899 nfermltl8rev 47904 wtgoldbnnsum4prm 47964 bgoldbnnsum3prm 47966 bgoldbtbndlem1 47967 tgblthelfgott 47977 |
| Copyright terms: Public domain | W3C validator |