Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrexpcl Structured version   Visualization version   GIF version

Theorem pell14qrexpcl 41595
Description: Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrexpcl ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))

Proof of Theorem pell14qrexpcl
StepHypRef Expression
1 elznn0 12572 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)))
2 simplll 773 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐷 ∈ (ℕ ∖ ◻NN))
3 simpllr 774 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ (Pell14QR‘𝐷))
4 simpr 485 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
5 pell14qrexpclnn0 41594 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
62, 3, 4, 5syl3anc 1371 . . . . 5 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
7 pell14qrre 41585 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
87recnd 11241 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
98ad2antrr 724 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ)
10 simplr 767 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1110recnd 11241 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℂ)
12 simpr 485 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → -𝐵 ∈ ℕ0)
13 expneg2 14035 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
149, 11, 12, 13syl3anc 1371 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
15 simplll 773 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐷 ∈ (ℕ ∖ ◻NN))
16 simpllr 774 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐴 ∈ (Pell14QR‘𝐷))
17 pell14qrexpclnn0 41594 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷))
1815, 16, 12, 17syl3anc 1371 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷))
19 pell14qrreccl 41592 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷)) → (1 / (𝐴↑-𝐵)) ∈ (Pell14QR‘𝐷))
2015, 18, 19syl2anc 584 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (1 / (𝐴↑-𝐵)) ∈ (Pell14QR‘𝐷))
2114, 20eqeltrd 2833 . . . . 5 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
226, 21jaodan 956 . . . 4 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
2322expl 458 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
241, 23biimtrid 241 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
25243impia 1117 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cdif 3945  cfv 6543  (class class class)co 7408  cc 11107  cr 11108  1c1 11110  -cneg 11444   / cdiv 11870  cn 12211  0cn0 12471  cz 12557  cexp 14026  NNcsquarenn 41564  Pell14QRcpell14qr 41567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-pell14qr 41571  df-pell1234qr 41572
This theorem is referenced by:  pellfund14  41626  pellfund14b  41627
  Copyright terms: Public domain W3C validator