Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrexpcl Structured version   Visualization version   GIF version

Theorem pell14qrexpcl 42287
Description: Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrexpcl ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))

Proof of Theorem pell14qrexpcl
StepHypRef Expression
1 elznn0 12604 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)))
2 simplll 774 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐷 ∈ (ℕ ∖ ◻NN))
3 simpllr 775 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ (Pell14QR‘𝐷))
4 simpr 484 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
5 pell14qrexpclnn0 42286 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
62, 3, 4, 5syl3anc 1369 . . . . 5 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
7 pell14qrre 42277 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
87recnd 11273 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
98ad2antrr 725 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ)
10 simplr 768 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1110recnd 11273 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℂ)
12 simpr 484 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → -𝐵 ∈ ℕ0)
13 expneg2 14068 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
149, 11, 12, 13syl3anc 1369 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
15 simplll 774 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐷 ∈ (ℕ ∖ ◻NN))
16 simpllr 775 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐴 ∈ (Pell14QR‘𝐷))
17 pell14qrexpclnn0 42286 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷))
1815, 16, 12, 17syl3anc 1369 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷))
19 pell14qrreccl 42284 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷)) → (1 / (𝐴↑-𝐵)) ∈ (Pell14QR‘𝐷))
2015, 18, 19syl2anc 583 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (1 / (𝐴↑-𝐵)) ∈ (Pell14QR‘𝐷))
2114, 20eqeltrd 2829 . . . . 5 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
226, 21jaodan 956 . . . 4 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
2322expl 457 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
241, 23biimtrid 241 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
25243impia 1115 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  cdif 3944  cfv 6548  (class class class)co 7420  cc 11137  cr 11138  1c1 11140  -cneg 11476   / cdiv 11902  cn 12243  0cn0 12503  cz 12589  cexp 14059  NNcsquarenn 42256  Pell14QRcpell14qr 42259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-pell14qr 42263  df-pell1234qr 42264
This theorem is referenced by:  pellfund14  42318  pellfund14b  42319
  Copyright terms: Public domain W3C validator