Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrexpcl Structured version   Visualization version   GIF version

Theorem pell14qrexpcl 42348
Description: Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrexpcl ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))

Proof of Theorem pell14qrexpcl
StepHypRef Expression
1 elznn0 12598 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)))
2 simplll 773 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐷 ∈ (ℕ ∖ ◻NN))
3 simpllr 774 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐴 ∈ (Pell14QR‘𝐷))
4 simpr 483 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
5 pell14qrexpclnn0 42347 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
62, 3, 4, 5syl3anc 1368 . . . . 5 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
7 pell14qrre 42338 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
87recnd 11267 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
98ad2antrr 724 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐴 ∈ ℂ)
10 simplr 767 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1110recnd 11267 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℂ)
12 simpr 483 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → -𝐵 ∈ ℕ0)
13 expneg2 14062 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
149, 11, 12, 13syl3anc 1368 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
15 simplll 773 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐷 ∈ (ℕ ∖ ◻NN))
16 simpllr 774 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → 𝐴 ∈ (Pell14QR‘𝐷))
17 pell14qrexpclnn0 42347 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷))
1815, 16, 12, 17syl3anc 1368 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷))
19 pell14qrreccl 42345 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴↑-𝐵) ∈ (Pell14QR‘𝐷)) → (1 / (𝐴↑-𝐵)) ∈ (Pell14QR‘𝐷))
2015, 18, 19syl2anc 582 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (1 / (𝐴↑-𝐵)) ∈ (Pell14QR‘𝐷))
2114, 20eqeltrd 2825 . . . . 5 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
226, 21jaodan 955 . . . 4 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
2322expl 456 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
241, 23biimtrid 241 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
25243impia 1114 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  cdif 3938  cfv 6543  (class class class)co 7413  cc 11131  cr 11132  1c1 11134  -cneg 11470   / cdiv 11896  cn 12237  0cn0 12497  cz 12583  cexp 14053  NNcsquarenn 42317  Pell14QRcpell14qr 42320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-pell14qr 42324  df-pell1234qr 42325
This theorem is referenced by:  pellfund14  42379  pellfund14b  42380
  Copyright terms: Public domain W3C validator