Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diacnvclN Structured version   Visualization version   GIF version

Theorem diacnvclN 38828
Description: Closure of partial isomorphism A converse. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1o.h 𝐻 = (LHyp‘𝐾)
dia1o.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diacnvclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)

Proof of Theorem diacnvclN
StepHypRef Expression
1 dia1o.h . . 3 𝐻 = (LHyp‘𝐾)
2 dia1o.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 38826 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
4 f1ocnvdm 7113 . 2 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)
53, 4sylan 583 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  ccnv 5564  dom cdm 5565  ran crn 5566  1-1-ontowf1o 6396  cfv 6397  HLchlt 37127  LHypclh 37761  DIsoAcdia 38805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-riotaBAD 36730
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-iun 4920  df-iin 4921  df-br 5068  df-opab 5130  df-mpt 5150  df-id 5469  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-1st 7779  df-2nd 7780  df-undef 8035  df-map 8530  df-proset 17826  df-poset 17844  df-plt 17860  df-lub 17876  df-glb 17877  df-join 17878  df-meet 17879  df-p0 17955  df-p1 17956  df-lat 17962  df-clat 18029  df-oposet 36953  df-ol 36955  df-oml 36956  df-covers 37043  df-ats 37044  df-atl 37075  df-cvlat 37099  df-hlat 37128  df-llines 37275  df-lplanes 37276  df-lvols 37277  df-lines 37278  df-psubsp 37280  df-pmap 37281  df-padd 37573  df-lhyp 37765  df-laut 37766  df-ldil 37881  df-ltrn 37882  df-trl 37936  df-disoa 38806
This theorem is referenced by:  diainN  38834  diasslssN  38836  docaclN  38901  doca3N  38904
  Copyright terms: Public domain W3C validator