| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdcnvcl | Structured version Visualization version GIF version | ||
| Description: Closure of the converse of the map defined by df-mapd 41628. (Contributed by NM, 13-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdcnvcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdcnvcl.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdcnvcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdcnvcl.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| mapdcnvcl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdcnvcl.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝑀) |
| Ref | Expression |
|---|---|
| mapdcnvcl | ⊢ (𝜑 → (◡𝑀‘𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdcnvcl.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | eqid 2736 | . . . 4 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
| 3 | mapdcnvcl.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 4 | mapdcnvcl.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | mapdcnvcl.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 6 | eqid 2736 | . . . 4 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
| 7 | eqid 2736 | . . . 4 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
| 8 | eqid 2736 | . . . 4 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
| 9 | eqid 2736 | . . . 4 ⊢ (LSubSp‘(LDual‘𝑈)) = (LSubSp‘(LDual‘𝑈)) | |
| 10 | eqid 2736 | . . . 4 ⊢ {𝑔 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔)} = {𝑔 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔)} | |
| 11 | mapdcnvcl.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | mapd1o 41651 | . . 3 ⊢ (𝜑 → 𝑀:𝑆–1-1-onto→((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 {𝑔 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔)})) |
| 13 | f1of1 6846 | . . 3 ⊢ (𝑀:𝑆–1-1-onto→((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 {𝑔 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔)}) → 𝑀:𝑆–1-1→((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 {𝑔 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔)})) | |
| 14 | f1f1orn 6858 | . . 3 ⊢ (𝑀:𝑆–1-1→((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 {𝑔 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑔))) = ((LKer‘𝑈)‘𝑔)}) → 𝑀:𝑆–1-1-onto→ran 𝑀) | |
| 15 | 12, 13, 14 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑀:𝑆–1-1-onto→ran 𝑀) |
| 16 | mapdcnvcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ran 𝑀) | |
| 17 | f1ocnvdm 7306 | . 2 ⊢ ((𝑀:𝑆–1-1-onto→ran 𝑀 ∧ 𝑋 ∈ ran 𝑀) → (◡𝑀‘𝑋) ∈ 𝑆) | |
| 18 | 15, 16, 17 | syl2anc 584 | 1 ⊢ (𝜑 → (◡𝑀‘𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 ∩ cin 3949 𝒫 cpw 4599 ◡ccnv 5683 ran crn 5685 –1-1→wf1 6557 –1-1-onto→wf1o 6559 ‘cfv 6560 LSubSpclss 20930 LFnlclfn 39059 LKerclk 39087 LDualcld 39125 HLchlt 39352 LHypclh 39987 DVecHcdvh 41081 ocHcoch 41350 mapdcmpd 41627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-riotaBAD 38955 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-undef 8299 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17487 df-mre 17630 df-mrc 17631 df-acs 17633 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-cntz 19336 df-oppg 19365 df-lsm 19655 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-nzr 20514 df-rlreg 20695 df-domn 20696 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lvec 21103 df-lsatoms 38978 df-lshyp 38979 df-lcv 39021 df-lfl 39060 df-lkr 39088 df-ldual 39126 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 df-lvols 39503 df-lines 39504 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-lhyp 39991 df-laut 39992 df-ldil 40107 df-ltrn 40108 df-trl 40162 df-tgrp 40746 df-tendo 40758 df-edring 40760 df-dveca 41006 df-disoa 41032 df-dvech 41082 df-dib 41142 df-dic 41176 df-dih 41232 df-doch 41351 df-djh 41398 df-mapd 41628 |
| This theorem is referenced by: mapdcnvordN 41661 mapdcv 41663 mapdin 41665 mapdlsm 41667 mapdcnvatN 41669 hdmaprnlem3N 41853 hdmaprnlem9N 41860 |
| Copyright terms: Public domain | W3C validator |