![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfv1 | Structured version Visualization version GIF version |
Description: Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
sseqfv1.4 | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) |
Ref | Expression |
---|---|
sseqfv1 | ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
2 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
3 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
4 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
5 | 1, 2, 3, 4 | sseqval 32988 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))) |
6 | 5 | fveq1d 6844 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))‘𝑁)) |
7 | wrdfn 14416 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
9 | fvex 6855 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
10 | df-lsw 14451 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
11 | 9, 10 | fnmpti 6644 | . . . . 5 ⊢ lastS Fn V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
13 | lencl 14421 | . . . . . . 7 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
14 | 2, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑀) ∈ ℕ0) |
15 | 14 | nn0zd 12525 | . . . . 5 ⊢ (𝜑 → (♯‘𝑀) ∈ ℤ) |
16 | seqfn 13918 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) |
18 | ssv 3968 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) |
20 | fnco 6618 | . . . 4 ⊢ ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
21 | 12, 17, 19, 20 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) |
22 | fzouzdisj 13608 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
24 | sseqfv1.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) | |
25 | fvun1 6932 | . . 3 ⊢ ((𝑀 Fn (0..^(♯‘𝑀)) ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀)) ∧ (((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ ∧ 𝑁 ∈ (0..^(♯‘𝑀)))) → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))‘𝑁) = (𝑀‘𝑁)) | |
26 | 8, 21, 23, 24, 25 | syl112anc 1374 | . 2 ⊢ (𝜑 → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))‘𝑁) = (𝑀‘𝑁)) |
27 | 6, 26 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∪ cun 3908 ∩ cin 3909 ⊆ wss 3910 ∅c0 4282 {csn 4586 × cxp 5631 ◡ccnv 5632 ran crn 5634 “ cima 5636 ∘ ccom 5637 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 0cc0 11051 1c1 11052 − cmin 11385 ℕ0cn0 12413 ℤcz 12499 ℤ≥cuz 12763 ..^cfzo 13567 seqcseq 13906 ♯chash 14230 Word cword 14402 lastSclsw 14450 ++ cconcat 14458 〈“cs1 14483 seqstrcsseq 32983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-word 14403 df-lsw 14451 df-s1 14484 df-sseq 32984 |
This theorem is referenced by: sseqfres 32993 fib0 32999 fib1 33000 |
Copyright terms: Public domain | W3C validator |