![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfv1 | Structured version Visualization version GIF version |
Description: Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
sseqfv1.4 | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) |
Ref | Expression |
---|---|
sseqfv1 | ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
2 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
3 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
4 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
5 | 1, 2, 3, 4 | sseqval 34041 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))) |
6 | 5 | fveq1d 6904 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))‘𝑁)) |
7 | wrdfn 14518 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
9 | fvex 6915 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
10 | df-lsw 14553 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
11 | 9, 10 | fnmpti 6703 | . . . . 5 ⊢ lastS Fn V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
13 | lencl 14523 | . . . . . . 7 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
14 | 2, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑀) ∈ ℕ0) |
15 | 14 | nn0zd 12622 | . . . . 5 ⊢ (𝜑 → (♯‘𝑀) ∈ ℤ) |
16 | seqfn 14018 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀))) |
18 | ssv 4006 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V) |
20 | fnco 6677 | . . . 4 ⊢ ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
21 | 12, 17, 19, 20 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀))) |
22 | fzouzdisj 13708 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
24 | sseqfv1.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) | |
25 | fvun1 6994 | . . 3 ⊢ ((𝑀 Fn (0..^(♯‘𝑀)) ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀)) ∧ (((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ ∧ 𝑁 ∈ (0..^(♯‘𝑀)))) → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))‘𝑁) = (𝑀‘𝑁)) | |
26 | 8, 21, 23, 24, 25 | syl112anc 1371 | . 2 ⊢ (𝜑 → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))‘𝑁) = (𝑀‘𝑁)) |
27 | 6, 26 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∪ cun 3947 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 {csn 4632 × cxp 5680 ◡ccnv 5681 ran crn 5683 “ cima 5685 ∘ ccom 5686 Fn wfn 6548 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 0cc0 11146 1c1 11147 − cmin 11482 ℕ0cn0 12510 ℤcz 12596 ℤ≥cuz 12860 ..^cfzo 13667 seqcseq 14006 ♯chash 14329 Word cword 14504 lastSclsw 14552 ++ cconcat 14560 ⟨“cs1 14585 seqstrcsseq 34036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-word 14505 df-lsw 14553 df-s1 14586 df-sseq 34037 |
This theorem is referenced by: sseqfres 34046 fib0 34052 fib1 34053 |
Copyright terms: Public domain | W3C validator |