![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfv1 | Structured version Visualization version GIF version |
Description: Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
sseqfv1.4 | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) |
Ref | Expression |
---|---|
sseqfv1 | ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
2 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
3 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
4 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
5 | 1, 2, 3, 4 | sseqval 34384 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))) |
6 | 5 | fveq1d 6916 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))‘𝑁)) |
7 | wrdfn 14572 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
9 | fvex 6927 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
10 | df-lsw 14607 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
11 | 9, 10 | fnmpti 6719 | . . . . 5 ⊢ lastS Fn V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
13 | lencl 14577 | . . . . . . 7 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
14 | 2, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑀) ∈ ℕ0) |
15 | 14 | nn0zd 12646 | . . . . 5 ⊢ (𝜑 → (♯‘𝑀) ∈ ℤ) |
16 | seqfn 14060 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) |
18 | ssv 4023 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) |
20 | fnco 6694 | . . . 4 ⊢ ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
21 | 12, 17, 19, 20 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) |
22 | fzouzdisj 13741 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
24 | sseqfv1.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) | |
25 | fvun1 7007 | . . 3 ⊢ ((𝑀 Fn (0..^(♯‘𝑀)) ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀)) ∧ (((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ ∧ 𝑁 ∈ (0..^(♯‘𝑀)))) → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))‘𝑁) = (𝑀‘𝑁)) | |
26 | 8, 21, 23, 24, 25 | syl112anc 1375 | . 2 ⊢ (𝜑 → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))‘𝑁) = (𝑀‘𝑁)) |
27 | 6, 26 | eqtrd 2777 | 1 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∪ cun 3964 ∩ cin 3965 ⊆ wss 3966 ∅c0 4342 {csn 4634 × cxp 5691 ◡ccnv 5692 ran crn 5694 “ cima 5696 ∘ ccom 5697 Fn wfn 6564 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 0cc0 11162 1c1 11163 − cmin 11499 ℕ0cn0 12533 ℤcz 12620 ℤ≥cuz 12885 ..^cfzo 13700 seqcseq 14048 ♯chash 14375 Word cword 14558 lastSclsw 14606 ++ cconcat 14614 〈“cs1 14639 seqstrcsseq 34379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-word 14559 df-lsw 14607 df-s1 14640 df-sseq 34380 |
This theorem is referenced by: sseqfres 34389 fib0 34395 fib1 34396 |
Copyright terms: Public domain | W3C validator |