![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfv1 | Structured version Visualization version GIF version |
Description: Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
sseqfv1.4 | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) |
Ref | Expression |
---|---|
sseqfv1 | ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
2 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
3 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
4 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
5 | 1, 2, 3, 4 | sseqval 33375 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))) |
6 | 5 | fveq1d 6890 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))‘𝑁)) |
7 | wrdfn 14474 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
9 | fvex 6901 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
10 | df-lsw 14509 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
11 | 9, 10 | fnmpti 6690 | . . . . 5 ⊢ lastS Fn V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
13 | lencl 14479 | . . . . . . 7 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
14 | 2, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑀) ∈ ℕ0) |
15 | 14 | nn0zd 12580 | . . . . 5 ⊢ (𝜑 → (♯‘𝑀) ∈ ℤ) |
16 | seqfn 13974 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀))) |
18 | ssv 4005 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V) |
20 | fnco 6664 | . . . 4 ⊢ ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
21 | 12, 17, 19, 20 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀))) |
22 | fzouzdisj 13664 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
24 | sseqfv1.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) | |
25 | fvun1 6979 | . . 3 ⊢ ((𝑀 Fn (0..^(♯‘𝑀)) ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))) Fn (ℤ≥‘(♯‘𝑀)) ∧ (((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ ∧ 𝑁 ∈ (0..^(♯‘𝑀)))) → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))‘𝑁) = (𝑀‘𝑁)) | |
26 | 8, 21, 23, 24, 25 | syl112anc 1374 | . 2 ⊢ (𝜑 → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹‘𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹‘𝑀)”⟩)}))))‘𝑁) = (𝑀‘𝑁)) |
27 | 6, 26 | eqtrd 2772 | 1 ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {csn 4627 × cxp 5673 ◡ccnv 5674 ran crn 5676 “ cima 5678 ∘ ccom 5679 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 0cc0 11106 1c1 11107 − cmin 11440 ℕ0cn0 12468 ℤcz 12554 ℤ≥cuz 12818 ..^cfzo 13623 seqcseq 13962 ♯chash 14286 Word cword 14460 lastSclsw 14508 ++ cconcat 14516 ⟨“cs1 14541 seqstrcsseq 33370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-word 14461 df-lsw 14509 df-s1 14542 df-sseq 33371 |
This theorem is referenced by: sseqfres 33380 fib0 33386 fib1 33387 |
Copyright terms: Public domain | W3C validator |