Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqfv1 Structured version   Visualization version   GIF version

Theorem sseqfv1 31640
Description: Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
sseqfv1.4 (𝜑𝑁 ∈ (0..^(♯‘𝑀)))
Assertion
Ref Expression
sseqfv1 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀𝑁))

Proof of Theorem sseqfv1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.1 . . . 4 (𝜑𝑆 ∈ V)
2 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
3 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
4 sseqval.4 . . . 4 (𝜑𝐹:𝑊𝑆)
51, 2, 3, 4sseqval 31639 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
65fveq1d 6665 . 2 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁))
7 wrdfn 13868 . . . 4 (𝑀 ∈ Word 𝑆𝑀 Fn (0..^(♯‘𝑀)))
82, 7syl 17 . . 3 (𝜑𝑀 Fn (0..^(♯‘𝑀)))
9 fvex 6676 . . . . . 6 (𝑥‘((♯‘𝑥) − 1)) ∈ V
10 df-lsw 13907 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
119, 10fnmpti 6484 . . . . 5 lastS Fn V
1211a1i 11 . . . 4 (𝜑 → lastS Fn V)
13 lencl 13875 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
142, 13syl 17 . . . . . 6 (𝜑 → (♯‘𝑀) ∈ ℕ0)
1514nn0zd 12077 . . . . 5 (𝜑 → (♯‘𝑀) ∈ ℤ)
16 seqfn 13373 . . . . 5 ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)))
1715, 16syl 17 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)))
18 ssv 3989 . . . . 5 ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V
1918a1i 11 . . . 4 (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V)
20 fnco 6458 . . . 4 ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)))
2112, 17, 19, 20syl3anc 1366 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)))
22 fzouzdisj 13065 . . . 4 ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅
2322a1i 11 . . 3 (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅)
24 sseqfv1.4 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑀)))
25 fvun1 6747 . . 3 ((𝑀 Fn (0..^(♯‘𝑀)) ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)) ∧ (((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅ ∧ 𝑁 ∈ (0..^(♯‘𝑀)))) → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁) = (𝑀𝑁))
268, 21, 23, 24, 25syl112anc 1369 . 2 (𝜑 → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁) = (𝑀𝑁))
276, 26eqtrd 2854 1 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1531  wcel 2108  Vcvv 3493  cun 3932  cin 3933  wss 3934  c0 4289  {csn 4559   × cxp 5546  ccnv 5547  ran crn 5549  cima 5551  ccom 5552   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  cmpo 7150  0cc0 10529  1c1 10530  cmin 10862  0cn0 11889  cz 11973  cuz 12235  ..^cfzo 13025  seqcseq 13361  chash 13682  Word cword 13853  lastSclsw 13906   ++ cconcat 13914  ⟨“cs1 13941  seqstrcsseq 31634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-word 13854  df-lsw 13907  df-s1 13942  df-sseq 31635
This theorem is referenced by:  sseqfres  31644  fib0  31650  fib1  31651
  Copyright terms: Public domain W3C validator