Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsucsucval Structured version   Visualization version   GIF version

Theorem ackvalsucsucval 48609
Description: The Ackermann function at the successors. This is the third equation of Péter's definition of the Ackermann function. (Contributed by AV, 8-May-2024.)
Assertion
Ref Expression
ackvalsucsucval ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))

Proof of Theorem ackvalsucsucval
StepHypRef Expression
1 peano2nn0 12566 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 ackvalsuc1 48600 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
31, 2sylan2 593 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
4 fvexd 6921 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) ∈ V)
51adantl 481 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
6 eqidd 2738 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))
7 itcovalsucov 48589 . . . . 5 (((Ack‘𝑀) ∈ V ∧ (𝑁 + 1) ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
84, 5, 6, 7syl3anc 1373 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
98fveq1d 6908 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1))
10 ackfnnn0 48606 . . . . . . 7 (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0)
1110adantr 480 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) Fn ℕ0)
12 nn0ex 12532 . . . . . . . . 9 0 ∈ V
1312a1i 11 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ℕ0 ∈ V)
14 ackendofnn0 48605 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0)
1514adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀):ℕ0⟶ℕ0)
16 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
1713, 15, 16itcovalendof 48590 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁):ℕ0⟶ℕ0)
1817ffnd 6737 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0)
1917frnd 6744 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0)
20 fnco 6686 . . . . . 6 (((Ack‘𝑀) Fn ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0 ∧ ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
2111, 18, 19, 20syl3anc 1373 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
22 eqidd 2738 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁))
23 itcovalsucov 48589 . . . . . . 7 (((Ack‘𝑀) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁)) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
244, 16, 22, 23syl3anc 1373 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
2524fneq1d 6661 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ↔ ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0))
2621, 25mpbird 257 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0)
27 1nn0 12542 . . . 4 1 ∈ ℕ0
28 fvco2 7006 . . . 4 ((((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ∧ 1 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
2926, 27, 28sylancl 586 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
309, 29eqtrd 2777 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
31 ackvalsuc1 48600 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1))
3231eqcomd 2743 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1) = ((Ack‘(𝑀 + 1))‘𝑁))
3332fveq2d 6910 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
343, 30, 333eqtrd 2781 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  ran crn 5686  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  0cn0 12526  IterCompcitco 48578  Ackcack 48579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-itco 48580  df-ack 48581
This theorem is referenced by:  ackval41a  48615  ackval42  48617
  Copyright terms: Public domain W3C validator