Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsucsucval Structured version   Visualization version   GIF version

Theorem ackvalsucsucval 48813
Description: The Ackermann function at the successors. This is the third equation of Péter's definition of the Ackermann function. (Contributed by AV, 8-May-2024.)
Assertion
Ref Expression
ackvalsucsucval ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))

Proof of Theorem ackvalsucsucval
StepHypRef Expression
1 peano2nn0 12428 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 ackvalsuc1 48804 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
31, 2sylan2 593 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
4 fvexd 6843 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) ∈ V)
51adantl 481 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
6 eqidd 2734 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))
7 itcovalsucov 48793 . . . . 5 (((Ack‘𝑀) ∈ V ∧ (𝑁 + 1) ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
84, 5, 6, 7syl3anc 1373 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
98fveq1d 6830 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1))
10 ackfnnn0 48810 . . . . . . 7 (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0)
1110adantr 480 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) Fn ℕ0)
12 nn0ex 12394 . . . . . . . . 9 0 ∈ V
1312a1i 11 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ℕ0 ∈ V)
14 ackendofnn0 48809 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0)
1514adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀):ℕ0⟶ℕ0)
16 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
1713, 15, 16itcovalendof 48794 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁):ℕ0⟶ℕ0)
1817ffnd 6657 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0)
1917frnd 6664 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0)
20 fnco 6604 . . . . . 6 (((Ack‘𝑀) Fn ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0 ∧ ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
2111, 18, 19, 20syl3anc 1373 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
22 eqidd 2734 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁))
23 itcovalsucov 48793 . . . . . . 7 (((Ack‘𝑀) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁)) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
244, 16, 22, 23syl3anc 1373 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
2524fneq1d 6579 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ↔ ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0))
2621, 25mpbird 257 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0)
27 1nn0 12404 . . . 4 1 ∈ ℕ0
28 fvco2 6925 . . . 4 ((((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ∧ 1 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
2926, 27, 28sylancl 586 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
309, 29eqtrd 2768 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
31 ackvalsuc1 48804 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1))
3231eqcomd 2739 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1) = ((Ack‘(𝑀 + 1))‘𝑁))
3332fveq2d 6832 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
343, 30, 333eqtrd 2772 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  ran crn 5620  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  1c1 11014   + caddc 11016  0cn0 12388  IterCompcitco 48782  Ackcack 48783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-seq 13911  df-itco 48784  df-ack 48785
This theorem is referenced by:  ackval41a  48819  ackval42  48821
  Copyright terms: Public domain W3C validator