Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsucsucval Structured version   Visualization version   GIF version

Theorem ackvalsucsucval 45452
Description: The Ackermann function at the successors. This is the third equation of Péter's definition of the Ackermann function. (Contributed by AV, 8-May-2024.)
Assertion
Ref Expression
ackvalsucsucval ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))

Proof of Theorem ackvalsucsucval
StepHypRef Expression
1 peano2nn0 11959 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 ackvalsuc1 45443 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
31, 2sylan2 596 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
4 fvexd 6666 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) ∈ V)
51adantl 486 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
6 eqidd 2760 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))
7 itcovalsucov 45432 . . . . 5 (((Ack‘𝑀) ∈ V ∧ (𝑁 + 1) ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
84, 5, 6, 7syl3anc 1369 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
98fveq1d 6653 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1))
10 ackfnnn0 45449 . . . . . . 7 (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0)
1110adantr 485 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) Fn ℕ0)
12 nn0ex 11925 . . . . . . . . 9 0 ∈ V
1312a1i 11 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ℕ0 ∈ V)
14 ackendofnn0 45448 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0)
1514adantr 485 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀):ℕ0⟶ℕ0)
16 simpr 489 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
1713, 15, 16itcovalendof 45433 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁):ℕ0⟶ℕ0)
1817ffnd 6492 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0)
1917frnd 6498 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0)
20 fnco 6441 . . . . . 6 (((Ack‘𝑀) Fn ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0 ∧ ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
2111, 18, 19, 20syl3anc 1369 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
22 eqidd 2760 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁))
23 itcovalsucov 45432 . . . . . . 7 (((Ack‘𝑀) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁)) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
244, 16, 22, 23syl3anc 1369 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
2524fneq1d 6420 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ↔ ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0))
2621, 25mpbird 260 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0)
27 1nn0 11935 . . . 4 1 ∈ ℕ0
28 fvco2 6742 . . . 4 ((((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ∧ 1 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
2926, 27, 28sylancl 590 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
309, 29eqtrd 2794 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
31 ackvalsuc1 45443 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1))
3231eqcomd 2765 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1) = ((Ack‘(𝑀 + 1))‘𝑁))
3332fveq2d 6655 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
343, 30, 333eqtrd 2798 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3407  wss 3854  ran crn 5518  ccom 5521   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7143  1c1 10561   + caddc 10563  0cn0 11919  IterCompcitco 45421  Ackcack 45422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-seq 13404  df-itco 45423  df-ack 45424
This theorem is referenced by:  ackval41a  45458  ackval42  45460
  Copyright terms: Public domain W3C validator