Proof of Theorem ackvalsucsucval
| Step | Hyp | Ref
| Expression |
| 1 | | peano2nn0 12566 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 2 | | ackvalsuc1 48600 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ (𝑁 + 1) ∈
ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1)) |
| 3 | 1, 2 | sylan2 593 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1)) |
| 4 | | fvexd 6921 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (Ack‘𝑀) ∈ V) |
| 5 | 1 | adantl 481 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 + 1) ∈
ℕ0) |
| 6 | | eqidd 2738 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))) |
| 7 | | itcovalsucov 48589 |
. . . . 5
⊢
(((Ack‘𝑀)
∈ V ∧ (𝑁 + 1)
∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))) →
((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))) |
| 8 | 4, 5, 6, 7 | syl3anc 1373 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))) |
| 9 | 8 | fveq1d 6908 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = (((Ack‘𝑀) ∘
((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1)) |
| 10 | | ackfnnn0 48606 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ (Ack‘𝑀) Fn
ℕ0) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (Ack‘𝑀) Fn ℕ0) |
| 12 | | nn0ex 12532 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
| 13 | 12 | a1i 11 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ℕ0 ∈ V) |
| 14 | | ackendofnn0 48605 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ0
→ (Ack‘𝑀):ℕ0⟶ℕ0) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (Ack‘𝑀):ℕ0⟶ℕ0) |
| 16 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈
ℕ0) |
| 17 | 13, 15, 16 | itcovalendof 48590 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁):ℕ0⟶ℕ0) |
| 18 | 17 | ffnd 6737 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0) |
| 19 | 17 | frnd 6744 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆
ℕ0) |
| 20 | | fnco 6686 |
. . . . . 6
⊢
(((Ack‘𝑀) Fn
ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0 ∧ ran
((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0) →
((Ack‘𝑀) ∘
((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0) |
| 21 | 11, 18, 19, 20 | syl3anc 1373 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0) |
| 22 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁)) |
| 23 | | itcovalsucov 48589 |
. . . . . . 7
⊢
(((Ack‘𝑀)
∈ V ∧ 𝑁 ∈
ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁)) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁))) |
| 24 | 4, 16, 22, 23 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁))) |
| 25 | 24 | fneq1d 6661 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ↔
((Ack‘𝑀) ∘
((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)) |
| 26 | 21, 25 | mpbird 257 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn
ℕ0) |
| 27 | | 1nn0 12542 |
. . . 4
⊢ 1 ∈
ℕ0 |
| 28 | | fvco2 7006 |
. . . 4
⊢
((((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ∧ 1 ∈
ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1))) |
| 29 | 26, 27, 28 | sylancl 586 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1))) |
| 30 | 9, 29 | eqtrd 2777 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1))) |
| 31 | | ackvalsuc1 48600 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) |
| 32 | 31 | eqcomd 2743 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1) = ((Ack‘(𝑀 + 1))‘𝑁)) |
| 33 | 32 | fveq2d 6910 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁))) |
| 34 | 3, 30, 33 | 3eqtrd 2781 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁))) |