Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackvalsucsucval Structured version   Visualization version   GIF version

Theorem ackvalsucsucval 48681
Description: The Ackermann function at the successors. This is the third equation of Péter's definition of the Ackermann function. (Contributed by AV, 8-May-2024.)
Assertion
Ref Expression
ackvalsucsucval ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))

Proof of Theorem ackvalsucsucval
StepHypRef Expression
1 peano2nn0 12489 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 ackvalsuc1 48672 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
31, 2sylan2 593 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1))
4 fvexd 6876 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) ∈ V)
51adantl 481 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
6 eqidd 2731 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))
7 itcovalsucov 48661 . . . . 5 (((Ack‘𝑀) ∈ V ∧ (𝑁 + 1) ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
84, 5, 6, 7syl3anc 1373 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))))
98fveq1d 6863 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1))
10 ackfnnn0 48678 . . . . . . 7 (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0)
1110adantr 480 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀) Fn ℕ0)
12 nn0ex 12455 . . . . . . . . 9 0 ∈ V
1312a1i 11 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ℕ0 ∈ V)
14 ackendofnn0 48677 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0)
1514adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (Ack‘𝑀):ℕ0⟶ℕ0)
16 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
1713, 15, 16itcovalendof 48662 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁):ℕ0⟶ℕ0)
1817ffnd 6692 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0)
1917frnd 6699 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0)
20 fnco 6639 . . . . . 6 (((Ack‘𝑀) Fn ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) Fn ℕ0 ∧ ran ((IterComp‘(Ack‘𝑀))‘𝑁) ⊆ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
2111, 18, 19, 20syl3anc 1373 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0)
22 eqidd 2731 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁))
23 itcovalsucov 48661 . . . . . . 7 (((Ack‘𝑀) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ((IterComp‘(Ack‘𝑀))‘𝑁) = ((IterComp‘(Ack‘𝑀))‘𝑁)) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
244, 16, 22, 23syl3anc 1373 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) = ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)))
2524fneq1d 6614 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ↔ ((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘𝑁)) Fn ℕ0))
2621, 25mpbird 257 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0)
27 1nn0 12465 . . . 4 1 ∈ ℕ0
28 fvco2 6961 . . . 4 ((((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)) Fn ℕ0 ∧ 1 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
2926, 27, 28sylancl 586 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((Ack‘𝑀) ∘ ((IterComp‘(Ack‘𝑀))‘(𝑁 + 1)))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
309, 29eqtrd 2765 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘((𝑁 + 1) + 1))‘1) = ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)))
31 ackvalsuc1 48672 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1))
3231eqcomd 2736 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1) = ((Ack‘(𝑀 + 1))‘𝑁))
3332fveq2d 6865 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘𝑀)‘(((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
343, 30, 333eqtrd 2769 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  ran crn 5642  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078  0cn0 12449  IterCompcitco 48650  Ackcack 48651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-itco 48652  df-ack 48653
This theorem is referenced by:  ackval41a  48687  ackval42  48689
  Copyright terms: Public domain W3C validator