MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshco Structured version   Visualization version   GIF version

Theorem cshco 14855
Description: Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018.)
Assertion
Ref Expression
cshco ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))

Proof of Theorem cshco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6706 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1135 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 cshwfn 14819 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
433adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
5 cshwrn 14820 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
653adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
7 fnco 6656 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ ran (𝑊 cyclShift 𝑁) ⊆ 𝐴) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
82, 4, 6, 7syl3anc 1373 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
9 wrdco 14850 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
1093adant2 1131 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
11 simp2 1137 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ ℤ)
12 cshwfn 14819 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
1310, 11, 12syl2anc 584 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
14 lenco 14851 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
15143adant2 1131 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1615oveq2d 7421 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
1716fneq2d 6632 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))) ↔ ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊))))
1813, 17mpbid 232 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
1915adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
2019oveq2d 7421 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
2120fveq2d 6880 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
2221fveq2d 6880 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
23 wrdfn 14546 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
24233ad2ant1 1133 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(♯‘𝑊)))
2524adantr 480 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
26 elfzoelz 13676 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
27 zaddcl 12632 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 + 𝑁) ∈ ℤ)
2826, 11, 27syl2anr 597 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖 + 𝑁) ∈ ℤ)
29 elfzo0 13717 . . . . . . . . 9 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
3029simp2bi 1146 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
3130adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
32 zmodfzo 13911 . . . . . . 7 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3328, 31, 32syl2anc 584 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3415oveq2d 7421 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
3534eleq1d 2819 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3635adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3733, 36mpbird 257 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)))
38 fvco2 6976 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
3925, 37, 38syl2anc 584 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
40 simpl1 1192 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
4111adantr 480 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simpr 484 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmod 14821 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑖) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
4443fveq2d 6880 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4540, 41, 42, 44syl3anc 1373 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4622, 39, 453eqtr4rd 2781 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
47 fvco2 6976 . . . 4 (((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
484, 47sylan 580 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
4910adantr 480 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹𝑊) ∈ Word 𝐵)
5015eqcomd 2741 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
5150oveq2d 7421 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0..^(♯‘(𝐹𝑊))))
5251eleq2d 2820 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))))
5352biimpa 476 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝐹𝑊))))
54 cshwidxmod 14821 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5549, 41, 53, 54syl3anc 1373 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5646, 48, 553eqtr4d 2780 . 2 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (((𝐹𝑊) cyclShift 𝑁)‘𝑖))
578, 18, 56eqfnfvd 7024 1 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926   class class class wbr 5119  ran crn 5655  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129   + caddc 11132   < clt 11269  cn 12240  0cn0 12501  cz 12588  ..^cfzo 13671   mod cmo 13886  chash 14348  Word cword 14531   cyclShift ccsh 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-hash 14349  df-word 14532  df-concat 14589  df-substr 14659  df-pfx 14689  df-csh 14807
This theorem is referenced by:  cycpmconjv  33153  cycpmconjslem1  33165
  Copyright terms: Public domain W3C validator