MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshco Structured version   Visualization version   GIF version

Theorem cshco 14784
Description: Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018.)
Assertion
Ref Expression
cshco ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))

Proof of Theorem cshco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6715 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1136 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 cshwfn 14748 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
433adant3 1133 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
5 cshwrn 14749 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
653adant3 1133 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
7 fnco 6665 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ ran (𝑊 cyclShift 𝑁) ⊆ 𝐴) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
82, 4, 6, 7syl3anc 1372 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
9 wrdco 14779 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
1093adant2 1132 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
11 simp2 1138 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ ℤ)
12 cshwfn 14748 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
1310, 11, 12syl2anc 585 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
14 lenco 14780 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
15143adant2 1132 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1615oveq2d 7422 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
1716fneq2d 6641 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))) ↔ ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊))))
1813, 17mpbid 231 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
1915adantr 482 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
2019oveq2d 7422 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
2120fveq2d 6893 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
2221fveq2d 6893 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
23 wrdfn 14475 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
24233ad2ant1 1134 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(♯‘𝑊)))
2524adantr 482 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
26 elfzoelz 13629 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
27 zaddcl 12599 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 + 𝑁) ∈ ℤ)
2826, 11, 27syl2anr 598 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖 + 𝑁) ∈ ℤ)
29 elfzo0 13670 . . . . . . . . 9 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
3029simp2bi 1147 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
3130adantl 483 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
32 zmodfzo 13856 . . . . . . 7 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3328, 31, 32syl2anc 585 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3415oveq2d 7422 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
3534eleq1d 2819 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3635adantr 482 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3733, 36mpbird 257 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)))
38 fvco2 6986 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
3925, 37, 38syl2anc 585 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
40 simpl1 1192 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
4111adantr 482 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simpr 486 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmod 14750 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑖) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
4443fveq2d 6893 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4540, 41, 42, 44syl3anc 1372 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4622, 39, 453eqtr4rd 2784 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
47 fvco2 6986 . . . 4 (((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
484, 47sylan 581 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
4910adantr 482 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹𝑊) ∈ Word 𝐵)
5015eqcomd 2739 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
5150oveq2d 7422 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0..^(♯‘(𝐹𝑊))))
5251eleq2d 2820 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))))
5352biimpa 478 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝐹𝑊))))
54 cshwidxmod 14750 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5549, 41, 53, 54syl3anc 1372 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5646, 48, 553eqtr4d 2783 . 2 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (((𝐹𝑊) cyclShift 𝑁)‘𝑖))
578, 18, 56eqfnfvd 7033 1 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3948   class class class wbr 5148  ran crn 5677  ccom 5680   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7406  0cc0 11107   + caddc 11110   < clt 11245  cn 12209  0cn0 12469  cz 12555  ..^cfzo 13624   mod cmo 13831  chash 14287  Word cword 14461   cyclShift ccsh 14735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-hash 14288  df-word 14462  df-concat 14518  df-substr 14588  df-pfx 14618  df-csh 14736
This theorem is referenced by:  cycpmconjv  32289  cycpmconjslem1  32301
  Copyright terms: Public domain W3C validator