MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshco Structured version   Visualization version   GIF version

Theorem cshco 14761
Description: Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018.)
Assertion
Ref Expression
cshco ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))

Proof of Theorem cshco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6656 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1135 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 cshwfn 14725 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
433adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
5 cshwrn 14726 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
653adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
7 fnco 6604 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ ran (𝑊 cyclShift 𝑁) ⊆ 𝐴) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
82, 4, 6, 7syl3anc 1373 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
9 wrdco 14756 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
1093adant2 1131 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
11 simp2 1137 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ ℤ)
12 cshwfn 14725 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
1310, 11, 12syl2anc 584 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
14 lenco 14757 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
15143adant2 1131 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1615oveq2d 7369 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
1716fneq2d 6580 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))) ↔ ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊))))
1813, 17mpbid 232 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
1915adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
2019oveq2d 7369 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
2120fveq2d 6830 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
2221fveq2d 6830 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
23 wrdfn 14453 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
24233ad2ant1 1133 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(♯‘𝑊)))
2524adantr 480 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
26 elfzoelz 13580 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
27 zaddcl 12533 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 + 𝑁) ∈ ℤ)
2826, 11, 27syl2anr 597 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖 + 𝑁) ∈ ℤ)
29 elfzo0 13621 . . . . . . . . 9 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
3029simp2bi 1146 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
3130adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
32 zmodfzo 13816 . . . . . . 7 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3328, 31, 32syl2anc 584 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3415oveq2d 7369 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
3534eleq1d 2813 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3635adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3733, 36mpbird 257 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)))
38 fvco2 6924 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
3925, 37, 38syl2anc 584 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
40 simpl1 1192 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
4111adantr 480 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simpr 484 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmod 14727 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑖) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
4443fveq2d 6830 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4540, 41, 42, 44syl3anc 1373 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4622, 39, 453eqtr4rd 2775 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
47 fvco2 6924 . . . 4 (((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
484, 47sylan 580 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
4910adantr 480 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹𝑊) ∈ Word 𝐵)
5015eqcomd 2735 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
5150oveq2d 7369 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0..^(♯‘(𝐹𝑊))))
5251eleq2d 2814 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))))
5352biimpa 476 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝐹𝑊))))
54 cshwidxmod 14727 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5549, 41, 53, 54syl3anc 1373 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5646, 48, 553eqtr4d 2774 . 2 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (((𝐹𝑊) cyclShift 𝑁)‘𝑖))
578, 18, 56eqfnfvd 6972 1 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905   class class class wbr 5095  ran crn 5624  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028   + caddc 11031   < clt 11168  cn 12146  0cn0 12402  cz 12489  ..^cfzo 13575   mod cmo 13791  chash 14255  Word cword 14438   cyclShift ccsh 14712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713
This theorem is referenced by:  cycpmconjv  33097  cycpmconjslem1  33109
  Copyright terms: Public domain W3C validator