MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshco Structured version   Visualization version   GIF version

Theorem cshco 14725
Description: Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018.)
Assertion
Ref Expression
cshco ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))

Proof of Theorem cshco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6668 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1135 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 cshwfn 14689 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
433adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
5 cshwrn 14690 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
653adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
7 fnco 6618 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ ran (𝑊 cyclShift 𝑁) ⊆ 𝐴) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
82, 4, 6, 7syl3anc 1371 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(♯‘𝑊)))
9 wrdco 14720 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
1093adant2 1131 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
11 simp2 1137 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ ℤ)
12 cshwfn 14689 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
1310, 11, 12syl2anc 584 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))))
14 lenco 14721 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
15143adant2 1131 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1615oveq2d 7373 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
1716fneq2d 6596 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘(𝐹𝑊))) ↔ ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊))))
1813, 17mpbid 231 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
1915adantr 481 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
2019oveq2d 7373 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
2120fveq2d 6846 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
2221fveq2d 6846 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
23 wrdfn 14416 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
24233ad2ant1 1133 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(♯‘𝑊)))
2524adantr 481 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
26 elfzoelz 13572 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
27 zaddcl 12543 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 + 𝑁) ∈ ℤ)
2826, 11, 27syl2anr 597 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖 + 𝑁) ∈ ℤ)
29 elfzo0 13613 . . . . . . . . 9 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
3029simp2bi 1146 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
3130adantl 482 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
32 zmodfzo 13799 . . . . . . 7 (((𝑖 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3328, 31, 32syl2anc 584 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
3415oveq2d 7373 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (♯‘𝑊)))
3534eleq1d 2822 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3635adantr 481 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)) ↔ ((𝑖 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))))
3733, 36mpbird 256 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊)))
38 fvco2 6938 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ ((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
3925, 37, 38syl2anc 584 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊))))))
40 simpl1 1191 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
4111adantr 481 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simpr 485 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmod 14691 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑖) = (𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊))))
4443fveq2d 6846 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4540, 41, 42, 44syl3anc 1371 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (♯‘𝑊)))))
4622, 39, 453eqtr4rd 2787 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
47 fvco2 6938 . . . 4 (((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
484, 47sylan 580 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
4910adantr 481 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝐹𝑊) ∈ Word 𝐵)
5015eqcomd 2742 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
5150oveq2d 7373 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0..^(♯‘(𝐹𝑊))))
5251eleq2d 2823 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))))
5352biimpa 477 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘(𝐹𝑊))))
54 cshwidxmod 14691 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘(𝐹𝑊)))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5549, 41, 53, 54syl3anc 1371 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (♯‘(𝐹𝑊)))))
5646, 48, 553eqtr4d 2786 . 2 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (((𝐹𝑊) cyclShift 𝑁)‘𝑖))
578, 18, 56eqfnfvd 6985 1 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105  ran crn 5634  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  0cc0 11051   + caddc 11054   < clt 11189  cn 12153  0cn0 12413  cz 12499  ..^cfzo 13567   mod cmo 13774  chash 14230  Word cword 14402   cyclShift ccsh 14676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-hash 14231  df-word 14403  df-concat 14459  df-substr 14529  df-pfx 14559  df-csh 14677
This theorem is referenced by:  cycpmconjv  31991  cycpmconjslem1  32003
  Copyright terms: Public domain W3C validator