Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqfv2 Structured version   Visualization version   GIF version

Theorem sseqfv2 34392
Description: Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
sseqfv2.4 (𝜑𝑁 ∈ (ℤ‘(♯‘𝑀)))
Assertion
Ref Expression
sseqfv2 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem sseqfv2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.1 . . . 4 (𝜑𝑆 ∈ V)
2 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
3 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
4 sseqval.4 . . . 4 (𝜑𝐹:𝑊𝑆)
51, 2, 3, 4sseqval 34386 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
65fveq1d 6863 . 2 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁))
7 wrdfn 14500 . . . 4 (𝑀 ∈ Word 𝑆𝑀 Fn (0..^(♯‘𝑀)))
82, 7syl 17 . . 3 (𝜑𝑀 Fn (0..^(♯‘𝑀)))
9 fvex 6874 . . . . . 6 (𝑥‘((♯‘𝑥) − 1)) ∈ V
10 df-lsw 14535 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
119, 10fnmpti 6664 . . . . 5 lastS Fn V
1211a1i 11 . . . 4 (𝜑 → lastS Fn V)
13 lencl 14505 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
142, 13syl 17 . . . . . 6 (𝜑 → (♯‘𝑀) ∈ ℕ0)
1514nn0zd 12562 . . . . 5 (𝜑 → (♯‘𝑀) ∈ ℤ)
16 seqfn 13985 . . . . 5 ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)))
1715, 16syl 17 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)))
18 ssv 3974 . . . . 5 ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V
1918a1i 11 . . . 4 (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V)
20 fnco 6639 . . . 4 ((lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ⊆ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)))
2112, 17, 19, 20syl3anc 1373 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)))
22 fzouzdisj 13663 . . . 4 ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅
2322a1i 11 . . 3 (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅)
24 sseqfv2.4 . . 3 (𝜑𝑁 ∈ (ℤ‘(♯‘𝑀)))
25 fvun2 6956 . . 3 ((𝑀 Fn (0..^(♯‘𝑀)) ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) Fn (ℤ‘(♯‘𝑀)) ∧ (((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅ ∧ 𝑁 ∈ (ℤ‘(♯‘𝑀)))) → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁) = ((lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))‘𝑁))
268, 21, 23, 24, 25syl112anc 1376 . 2 (𝜑 → ((𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))‘𝑁) = ((lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))‘𝑁))
27 fnfun 6621 . . . 4 (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) Fn (ℤ‘(♯‘𝑀)) → Fun seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))
2817, 27syl 17 . . 3 (𝜑 → Fun seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))
29 fvexd 6876 . . . . . 6 (𝜑 → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(♯‘𝑀)) ∈ V)
30 ovexd 7425 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) ∈ V)
31 eqid 2730 . . . . . 6 (ℤ‘(♯‘𝑀)) = (ℤ‘(♯‘𝑀))
32 fvexd 6876 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘((♯‘𝑀) + 1))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) ∈ V)
3329, 30, 31, 15, 32seqf2 13993 . . . . 5 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶V)
3433fdmd 6701 . . . 4 (𝜑 → dom seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) = (ℤ‘(♯‘𝑀)))
3524, 34eleqtrrd 2832 . . 3 (𝜑𝑁 ∈ dom seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))
36 fvco 6962 . . 3 ((Fun seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∧ 𝑁 ∈ dom seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) → ((lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))‘𝑁) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁)))
3728, 35, 36syl2anc 584 . 2 (𝜑 → ((lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))‘𝑁) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁)))
386, 26, 373eqtrd 2769 1 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  0cn0 12449  cz 12536  cuz 12800  ..^cfzo 13622  seqcseq 13973  chash 14302  Word cword 14485  lastSclsw 14534   ++ cconcat 14542  ⟨“cs1 14567  seqstrcsseq 34381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-lsw 14535  df-s1 14568  df-sseq 34382
This theorem is referenced by:  sseqp1  34393
  Copyright terms: Public domain W3C validator