Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqfv2 Structured version   Visualization version   GIF version

Theorem sseqfv2 33381
Description: Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (πœ‘ β†’ 𝑆 ∈ V)
sseqval.2 (πœ‘ β†’ 𝑀 ∈ Word 𝑆)
sseqval.3 π‘Š = (Word 𝑆 ∩ (β—‘β™― β€œ (β„€β‰₯β€˜(β™―β€˜π‘€))))
sseqval.4 (πœ‘ β†’ 𝐹:π‘ŠβŸΆπ‘†)
sseqfv2.4 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜(β™―β€˜π‘€)))
Assertion
Ref Expression
sseqfv2 (πœ‘ β†’ ((𝑀seqstr𝐹)β€˜π‘) = (lastSβ€˜(seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))β€˜π‘)))
Distinct variable groups:   π‘₯,𝑦,𝐹   π‘₯,𝑀,𝑦   πœ‘,π‘₯,𝑦   π‘₯,π‘Š,𝑦
Allowed substitution hints:   𝑆(π‘₯,𝑦)   𝑁(π‘₯,𝑦)

Proof of Theorem sseqfv2
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.1 . . . 4 (πœ‘ β†’ 𝑆 ∈ V)
2 sseqval.2 . . . 4 (πœ‘ β†’ 𝑀 ∈ Word 𝑆)
3 sseqval.3 . . . 4 π‘Š = (Word 𝑆 ∩ (β—‘β™― β€œ (β„€β‰₯β€˜(β™―β€˜π‘€))))
4 sseqval.4 . . . 4 (πœ‘ β†’ 𝐹:π‘ŠβŸΆπ‘†)
51, 2, 3, 4sseqval 33375 . . 3 (πœ‘ β†’ (𝑀seqstr𝐹) = (𝑀 βˆͺ (lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))))
65fveq1d 6890 . 2 (πœ‘ β†’ ((𝑀seqstr𝐹)β€˜π‘) = ((𝑀 βˆͺ (lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))))β€˜π‘))
7 wrdfn 14474 . . . 4 (𝑀 ∈ Word 𝑆 β†’ 𝑀 Fn (0..^(β™―β€˜π‘€)))
82, 7syl 17 . . 3 (πœ‘ β†’ 𝑀 Fn (0..^(β™―β€˜π‘€)))
9 fvex 6901 . . . . . 6 (π‘₯β€˜((β™―β€˜π‘₯) βˆ’ 1)) ∈ V
10 df-lsw 14509 . . . . . 6 lastS = (π‘₯ ∈ V ↦ (π‘₯β€˜((β™―β€˜π‘₯) βˆ’ 1)))
119, 10fnmpti 6690 . . . . 5 lastS Fn V
1211a1i 11 . . . 4 (πœ‘ β†’ lastS Fn V)
13 lencl 14479 . . . . . . 7 (𝑀 ∈ Word 𝑆 β†’ (β™―β€˜π‘€) ∈ β„•0)
142, 13syl 17 . . . . . 6 (πœ‘ β†’ (β™―β€˜π‘€) ∈ β„•0)
1514nn0zd 12580 . . . . 5 (πœ‘ β†’ (β™―β€˜π‘€) ∈ β„€)
16 seqfn 13974 . . . . 5 ((β™―β€˜π‘€) ∈ β„€ β†’ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) Fn (β„€β‰₯β€˜(β™―β€˜π‘€)))
1715, 16syl 17 . . . 4 (πœ‘ β†’ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) Fn (β„€β‰₯β€˜(β™―β€˜π‘€)))
18 ssv 4005 . . . . 5 ran seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) βŠ† V
1918a1i 11 . . . 4 (πœ‘ β†’ ran seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) βŠ† V)
20 fnco 6664 . . . 4 ((lastS Fn V ∧ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) Fn (β„€β‰₯β€˜(β™―β€˜π‘€)) ∧ ran seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) βŠ† V) β†’ (lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))) Fn (β„€β‰₯β€˜(β™―β€˜π‘€)))
2112, 17, 19, 20syl3anc 1371 . . 3 (πœ‘ β†’ (lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))) Fn (β„€β‰₯β€˜(β™―β€˜π‘€)))
22 fzouzdisj 13664 . . . 4 ((0..^(β™―β€˜π‘€)) ∩ (β„€β‰₯β€˜(β™―β€˜π‘€))) = βˆ…
2322a1i 11 . . 3 (πœ‘ β†’ ((0..^(β™―β€˜π‘€)) ∩ (β„€β‰₯β€˜(β™―β€˜π‘€))) = βˆ…)
24 sseqfv2.4 . . 3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜(β™―β€˜π‘€)))
25 fvun2 6980 . . 3 ((𝑀 Fn (0..^(β™―β€˜π‘€)) ∧ (lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))) Fn (β„€β‰₯β€˜(β™―β€˜π‘€)) ∧ (((0..^(β™―β€˜π‘€)) ∩ (β„€β‰₯β€˜(β™―β€˜π‘€))) = βˆ… ∧ 𝑁 ∈ (β„€β‰₯β€˜(β™―β€˜π‘€)))) β†’ ((𝑀 βˆͺ (lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))))β€˜π‘) = ((lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))β€˜π‘))
268, 21, 23, 24, 25syl112anc 1374 . 2 (πœ‘ β†’ ((𝑀 βˆͺ (lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))))β€˜π‘) = ((lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))β€˜π‘))
27 fnfun 6646 . . . 4 (seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) Fn (β„€β‰₯β€˜(β™―β€˜π‘€)) β†’ Fun seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))
2817, 27syl 17 . . 3 (πœ‘ β†’ Fun seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))
29 fvexd 6903 . . . . . 6 (πœ‘ β†’ ((β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})β€˜(β™―β€˜π‘€)) ∈ V)
30 ovexd 7440 . . . . . 6 ((πœ‘ ∧ (π‘Ž ∈ V ∧ 𝑏 ∈ V)) β†’ (π‘Ž(π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©))𝑏) ∈ V)
31 eqid 2732 . . . . . 6 (β„€β‰₯β€˜(β™―β€˜π‘€)) = (β„€β‰₯β€˜(β™―β€˜π‘€))
32 fvexd 6903 . . . . . 6 ((πœ‘ ∧ π‘Ž ∈ (β„€β‰₯β€˜((β™―β€˜π‘€) + 1))) β†’ ((β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})β€˜π‘Ž) ∈ V)
3329, 30, 31, 15, 32seqf2 13983 . . . . 5 (πœ‘ β†’ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})):(β„€β‰₯β€˜(β™―β€˜π‘€))⟢V)
3433fdmd 6725 . . . 4 (πœ‘ β†’ dom seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) = (β„€β‰₯β€˜(β™―β€˜π‘€)))
3524, 34eleqtrrd 2836 . . 3 (πœ‘ β†’ 𝑁 ∈ dom seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))
36 fvco 6986 . . 3 ((Fun seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})) ∧ 𝑁 ∈ dom seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))) β†’ ((lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))β€˜π‘) = (lastSβ€˜(seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))β€˜π‘)))
3728, 35, 36syl2anc 584 . 2 (πœ‘ β†’ ((lastS ∘ seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)})))β€˜π‘) = (lastSβ€˜(seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))β€˜π‘)))
386, 26, 373eqtrd 2776 1 (πœ‘ β†’ ((𝑀seqstr𝐹)β€˜π‘) = (lastSβ€˜(seq(β™―β€˜π‘€)((π‘₯ ∈ V, 𝑦 ∈ V ↦ (π‘₯ ++ βŸ¨β€œ(πΉβ€˜π‘₯)β€βŸ©)), (β„•0 Γ— {(𝑀 ++ βŸ¨β€œ(πΉβ€˜π‘€)β€βŸ©)}))β€˜π‘)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   Γ— cxp 5673  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β€œ cima 5678   ∘ ccom 5679  Fun wfun 6534   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ..^cfzo 13623  seqcseq 13962  β™―chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516  βŸ¨β€œcs1 14541  seqstrcsseq 33370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-word 14461  df-lsw 14509  df-s1 14542  df-sseq 33371
This theorem is referenced by:  sseqp1  33382
  Copyright terms: Public domain W3C validator