MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frr3 Structured version   Visualization version   GIF version

Theorem frr3 9450
Description: Law of general well-founded recursion, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in frr1 9448 and frr2 9449 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
frr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frr3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑅   𝑧,𝐴   𝑧,𝐺   𝑧,𝐻

Proof of Theorem frr3
StepHypRef Expression
1 simpl 482 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝑅 Fr 𝐴𝑅 Se 𝐴))
2 frr.1 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
32frr1 9448 . . . 4 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
42frr2 9449 . . . . 5 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
54ralrimiva 3107 . . . 4 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
63, 5jca 511 . . 3 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
76adantr 480 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
8 simpr 484 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))))
9 frr3g 9445 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
101, 7, 8, 9syl3anc 1369 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wral 3063   Fr wfr 5532   Se wse 5533  cres 5582  Predcpred 6190   Fn wfn 6413  cfv 6418  (class class class)co 7255  frecscfrecs 8067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-trpred 9396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator