Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacnlem Structured version   Visualization version   GIF version

Theorem rhmpreimacnlem 31340
Description: Lemma for rhmpreimacn 31341. (Contributed by Thierry Arnoux, 7-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Spec‘𝑅)
rhmpreimacn.u 𝑈 = (Spec‘𝑆)
rhmpreimacn.a 𝐴 = (PrmIdeal‘𝑅)
rhmpreimacn.b 𝐵 = (PrmIdeal‘𝑆)
rhmpreimacn.j 𝐽 = (TopOpen‘𝑇)
rhmpreimacn.k 𝐾 = (TopOpen‘𝑈)
rhmpreimacn.g 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
rhmpreimacn.r (𝜑𝑅 ∈ CRing)
rhmpreimacn.s (𝜑𝑆 ∈ CRing)
rhmpreimacn.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (𝜑 → ran 𝐹 = (Base‘𝑆))
rhmpreimacnlem.1 (𝜑𝐼 ∈ (LIdeal‘𝑅))
rhmpreimacnlem.v 𝑉 = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
rhmpreimacnlem.w 𝑊 = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
Assertion
Ref Expression
rhmpreimacnlem (𝜑 → (𝑊‘(𝐹𝐼)) = (𝐺 “ (𝑉𝐼)))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑘   𝐵,𝑖,𝑗,𝑘   𝑘,𝐹,𝑖,𝑗   𝑖,𝐺   𝑖,𝐼,𝑗,𝑘   𝑖,𝐽,𝑗   𝑅,𝑖,𝑗,𝑘   𝑆,𝑖,𝑗,𝑘   𝑖,𝑉,𝑗   𝑗,𝑊   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑖,𝑗,𝑘)   𝑈(𝑖,𝑗,𝑘)   𝐺(𝑗,𝑘)   𝐽(𝑘)   𝐾(𝑖,𝑗,𝑘)   𝑉(𝑘)   𝑊(𝑖,𝑘)

Proof of Theorem rhmpreimacnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.g . . . . . 6 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
2 imaeq2 5890 . . . . . 6 (𝑖 = 𝑔 → (𝐹𝑖) = (𝐹𝑔))
3 simpr 489 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔𝐵)
4 rhmpreimacn.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
54elexd 3429 . . . . . . . 8 (𝜑𝐹 ∈ V)
6 cnvexg 7627 . . . . . . . 8 (𝐹 ∈ V → 𝐹 ∈ V)
7 imaexg 7618 . . . . . . . 8 (𝐹 ∈ V → (𝐹𝑔) ∈ V)
85, 6, 73syl 18 . . . . . . 7 (𝜑 → (𝐹𝑔) ∈ V)
98adantr 485 . . . . . 6 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ V)
101, 2, 3, 9fvmptd3 6775 . . . . 5 ((𝜑𝑔𝐵) → (𝐺𝑔) = (𝐹𝑔))
1110eleq1d 2835 . . . 4 ((𝜑𝑔𝐵) → ((𝐺𝑔) ∈ (𝑉𝐼) ↔ (𝐹𝑔) ∈ (𝑉𝐼)))
1211pm5.32da 583 . . 3 (𝜑 → ((𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼))))
13 rhmpreimacn.s . . . . . . . 8 (𝜑𝑆 ∈ CRing)
1413adantr 485 . . . . . . 7 ((𝜑𝑖𝐵) → 𝑆 ∈ CRing)
154adantr 485 . . . . . . 7 ((𝜑𝑖𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 489 . . . . . . . 8 ((𝜑𝑖𝐵) → 𝑖𝐵)
17 rhmpreimacn.b . . . . . . . 8 𝐵 = (PrmIdeal‘𝑆)
1816, 17eleqtrdi 2861 . . . . . . 7 ((𝜑𝑖𝐵) → 𝑖 ∈ (PrmIdeal‘𝑆))
19 rhmpreimacn.a . . . . . . . 8 𝐴 = (PrmIdeal‘𝑅)
2019rhmpreimaprmidl 31133 . . . . . . 7 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑖) ∈ 𝐴)
2114, 15, 18, 20syl21anc 837 . . . . . 6 ((𝜑𝑖𝐵) → (𝐹𝑖) ∈ 𝐴)
2221, 1fmptd 6862 . . . . 5 (𝜑𝐺:𝐵𝐴)
2322ffnd 6492 . . . 4 (𝜑𝐺 Fn 𝐵)
24 elpreima 6812 . . . 4 (𝐺 Fn 𝐵 → (𝑔 ∈ (𝐺 “ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼))))
2523, 24syl 17 . . 3 (𝜑 → (𝑔 ∈ (𝐺 “ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼))))
26 rhmpreimacnlem.w . . . . . . . . 9 𝑊 = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
27 sseq1 3913 . . . . . . . . . 10 (𝑗 = (𝐹𝐼) → (𝑗𝑘 ↔ (𝐹𝐼) ⊆ 𝑘))
2827rabbidv 3390 . . . . . . . . 9 (𝑗 = (𝐹𝐼) → {𝑘𝐵𝑗𝑘} = {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘})
29 rhmpreimacn.1 . . . . . . . . . 10 (𝜑 → ran 𝐹 = (Base‘𝑆))
30 rhmpreimacnlem.1 . . . . . . . . . 10 (𝜑𝐼 ∈ (LIdeal‘𝑅))
31 eqid 2759 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
32 eqid 2759 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
33 eqid 2759 . . . . . . . . . . 11 (LIdeal‘𝑆) = (LIdeal‘𝑆)
3431, 32, 33rhmimaidl 31115 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Base‘𝑆) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝐹𝐼) ∈ (LIdeal‘𝑆))
354, 29, 30, 34syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝐹𝐼) ∈ (LIdeal‘𝑆))
3617fvexi 6665 . . . . . . . . . . 11 𝐵 ∈ V
3736rabex 5195 . . . . . . . . . 10 {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ∈ V
3837a1i 11 . . . . . . . . 9 (𝜑 → {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ∈ V)
3926, 28, 35, 38fvmptd3 6775 . . . . . . . 8 (𝜑 → (𝑊‘(𝐹𝐼)) = {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘})
4039eleq2d 2836 . . . . . . 7 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ 𝑔 ∈ {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘}))
41 sseq2 3914 . . . . . . . 8 (𝑘 = 𝑔 → ((𝐹𝐼) ⊆ 𝑘 ↔ (𝐹𝐼) ⊆ 𝑔))
4241elrab 3600 . . . . . . 7 (𝑔 ∈ {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ↔ (𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔))
4340, 42syl6bb 291 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔)))
44 eqid 2759 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4544, 31rhmf 19534 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
464, 45syl 17 . . . . . . . . 9 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4746ffund 6495 . . . . . . . 8 (𝜑 → Fun 𝐹)
4844, 32lidlss 20036 . . . . . . . . . 10 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅))
4930, 48syl 17 . . . . . . . . 9 (𝜑𝐼 ⊆ (Base‘𝑅))
5046fdmd 6501 . . . . . . . . 9 (𝜑 → dom 𝐹 = (Base‘𝑅))
5149, 50sseqtrrd 3929 . . . . . . . 8 (𝜑𝐼 ⊆ dom 𝐹)
52 funimass3 6808 . . . . . . . 8 ((Fun 𝐹𝐼 ⊆ dom 𝐹) → ((𝐹𝐼) ⊆ 𝑔𝐼 ⊆ (𝐹𝑔)))
5347, 51, 52syl2anc 588 . . . . . . 7 (𝜑 → ((𝐹𝐼) ⊆ 𝑔𝐼 ⊆ (𝐹𝑔)))
5453anbi2d 632 . . . . . 6 (𝜑 → ((𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔) ↔ (𝑔𝐵𝐼 ⊆ (𝐹𝑔))))
5513adantr 485 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝑆 ∈ CRing)
564adantr 485 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
573, 17eleqtrdi 2861 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝑔 ∈ (PrmIdeal‘𝑆))
5819rhmpreimaprmidl 31133 . . . . . . . . 9 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑔 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑔) ∈ 𝐴)
5955, 56, 57, 58syl21anc 837 . . . . . . . 8 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ 𝐴)
6059biantrurd 537 . . . . . . 7 ((𝜑𝑔𝐵) → (𝐼 ⊆ (𝐹𝑔) ↔ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔))))
6160pm5.32da 583 . . . . . 6 (𝜑 → ((𝑔𝐵𝐼 ⊆ (𝐹𝑔)) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))))
6243, 54, 613bitrd 309 . . . . 5 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))))
63 sseq2 3914 . . . . . . 7 (𝑘 = (𝐹𝑔) → (𝐼𝑘𝐼 ⊆ (𝐹𝑔)))
6463elrab 3600 . . . . . 6 ((𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘} ↔ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))
6564anbi2i 626 . . . . 5 ((𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘}) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔))))
6662, 65bitr4di 293 . . . 4 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘})))
67 rhmpreimacnlem.v . . . . . . 7 𝑉 = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
68 sseq1 3913 . . . . . . . 8 (𝑗 = 𝐼 → (𝑗𝑘𝐼𝑘))
6968rabbidv 3390 . . . . . . 7 (𝑗 = 𝐼 → {𝑘𝐴𝑗𝑘} = {𝑘𝐴𝐼𝑘})
7019fvexi 6665 . . . . . . . . 9 𝐴 ∈ V
7170rabex 5195 . . . . . . . 8 {𝑘𝐴𝐼𝑘} ∈ V
7271a1i 11 . . . . . . 7 (𝜑 → {𝑘𝐴𝐼𝑘} ∈ V)
7367, 69, 30, 72fvmptd3 6775 . . . . . 6 (𝜑 → (𝑉𝐼) = {𝑘𝐴𝐼𝑘})
7473eleq2d 2836 . . . . 5 (𝜑 → ((𝐹𝑔) ∈ (𝑉𝐼) ↔ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘}))
7574anbi2d 632 . . . 4 (𝜑 → ((𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘})))
7666, 75bitr4d 285 . . 3 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼))))
7712, 25, 763bitr4rd 316 . 2 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ 𝑔 ∈ (𝐺 “ (𝑉𝐼))))
7877eqrdv 2757 1 (𝜑 → (𝑊‘(𝐹𝐼)) = (𝐺 “ (𝑉𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  {crab 3072  Vcvv 3407  wss 3854  cmpt 5105  ccnv 5516  dom cdm 5517  ran crn 5518  cima 5520  Fun wfun 6322   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7143  Basecbs 16526  TopOpenctopn 16738  CRingccrg 19351   RingHom crh 19520  LIdealclidl 19995  PrmIdealcprmidl 31116  Speccrspec 31318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-ip 16626  df-0g 16758  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-mhm 18007  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-ghm 18408  df-cmn 18960  df-mgp 19293  df-ur 19305  df-ring 19352  df-cring 19353  df-rnghom 19523  df-subrg 19586  df-lmod 19689  df-lss 19757  df-lsp 19797  df-sra 19997  df-rgmod 19998  df-lidl 19999  df-rsp 20000  df-prmidl 31117
This theorem is referenced by:  rhmpreimacn  31341
  Copyright terms: Public domain W3C validator