Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacnlem Structured version   Visualization version   GIF version

Theorem rhmpreimacnlem 33874
Description: Lemma for rhmpreimacn 33875. (Contributed by Thierry Arnoux, 7-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Spec‘𝑅)
rhmpreimacn.u 𝑈 = (Spec‘𝑆)
rhmpreimacn.a 𝐴 = (PrmIdeal‘𝑅)
rhmpreimacn.b 𝐵 = (PrmIdeal‘𝑆)
rhmpreimacn.j 𝐽 = (TopOpen‘𝑇)
rhmpreimacn.k 𝐾 = (TopOpen‘𝑈)
rhmpreimacn.g 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
rhmpreimacn.r (𝜑𝑅 ∈ CRing)
rhmpreimacn.s (𝜑𝑆 ∈ CRing)
rhmpreimacn.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (𝜑 → ran 𝐹 = (Base‘𝑆))
rhmpreimacnlem.1 (𝜑𝐼 ∈ (LIdeal‘𝑅))
rhmpreimacnlem.v 𝑉 = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
rhmpreimacnlem.w 𝑊 = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
Assertion
Ref Expression
rhmpreimacnlem (𝜑 → (𝑊‘(𝐹𝐼)) = (𝐺 “ (𝑉𝐼)))
Distinct variable groups:   𝐴,𝑘   𝑅,𝑘   𝑖,𝑉,𝑗   𝑅,𝑖,𝑗,𝑘   𝑗,𝑊   𝑖,𝐽,𝑗   𝜑,𝑗   𝑆,𝑖,𝑗   𝜑,𝑖   𝑖,𝐺   𝑖,𝐼,𝑗   𝐵,𝑖,𝑗,𝑘   𝑘,𝐹   𝑘,𝐼   𝐴,𝑖,𝑗   𝑖,𝐹,𝑗   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑖,𝑗,𝑘)   𝑈(𝑖,𝑗,𝑘)   𝐺(𝑗,𝑘)   𝐽(𝑘)   𝐾(𝑖,𝑗,𝑘)   𝑉(𝑘)   𝑊(𝑖,𝑘)

Proof of Theorem rhmpreimacnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.g . . . . . 6 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
2 imaeq2 6027 . . . . . 6 (𝑖 = 𝑔 → (𝐹𝑖) = (𝐹𝑔))
3 simpr 484 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔𝐵)
4 rhmpreimacn.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
54elexd 3471 . . . . . . . 8 (𝜑𝐹 ∈ V)
6 cnvexg 7900 . . . . . . . 8 (𝐹 ∈ V → 𝐹 ∈ V)
7 imaexg 7889 . . . . . . . 8 (𝐹 ∈ V → (𝐹𝑔) ∈ V)
85, 6, 73syl 18 . . . . . . 7 (𝜑 → (𝐹𝑔) ∈ V)
98adantr 480 . . . . . 6 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ V)
101, 2, 3, 9fvmptd3 6991 . . . . 5 ((𝜑𝑔𝐵) → (𝐺𝑔) = (𝐹𝑔))
1110eleq1d 2813 . . . 4 ((𝜑𝑔𝐵) → ((𝐺𝑔) ∈ (𝑉𝐼) ↔ (𝐹𝑔) ∈ (𝑉𝐼)))
1211pm5.32da 579 . . 3 (𝜑 → ((𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼))))
13 rhmpreimacn.s . . . . . . . 8 (𝜑𝑆 ∈ CRing)
1413adantr 480 . . . . . . 7 ((𝜑𝑖𝐵) → 𝑆 ∈ CRing)
154adantr 480 . . . . . . 7 ((𝜑𝑖𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 484 . . . . . . . 8 ((𝜑𝑖𝐵) → 𝑖𝐵)
17 rhmpreimacn.b . . . . . . . 8 𝐵 = (PrmIdeal‘𝑆)
1816, 17eleqtrdi 2838 . . . . . . 7 ((𝜑𝑖𝐵) → 𝑖 ∈ (PrmIdeal‘𝑆))
19 rhmpreimacn.a . . . . . . . 8 𝐴 = (PrmIdeal‘𝑅)
2019rhmpreimaprmidl 33422 . . . . . . 7 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑖) ∈ 𝐴)
2114, 15, 18, 20syl21anc 837 . . . . . 6 ((𝜑𝑖𝐵) → (𝐹𝑖) ∈ 𝐴)
2221, 1fmptd 7086 . . . . 5 (𝜑𝐺:𝐵𝐴)
2322ffnd 6689 . . . 4 (𝜑𝐺 Fn 𝐵)
24 elpreima 7030 . . . 4 (𝐺 Fn 𝐵 → (𝑔 ∈ (𝐺 “ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼))))
2523, 24syl 17 . . 3 (𝜑 → (𝑔 ∈ (𝐺 “ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼))))
26 rhmpreimacnlem.w . . . . . . . . 9 𝑊 = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
27 sseq1 3972 . . . . . . . . . 10 (𝑗 = (𝐹𝐼) → (𝑗𝑘 ↔ (𝐹𝐼) ⊆ 𝑘))
2827rabbidv 3413 . . . . . . . . 9 (𝑗 = (𝐹𝐼) → {𝑘𝐵𝑗𝑘} = {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘})
29 rhmpreimacn.1 . . . . . . . . . 10 (𝜑 → ran 𝐹 = (Base‘𝑆))
30 rhmpreimacnlem.1 . . . . . . . . . 10 (𝜑𝐼 ∈ (LIdeal‘𝑅))
31 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
32 eqid 2729 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
33 eqid 2729 . . . . . . . . . . 11 (LIdeal‘𝑆) = (LIdeal‘𝑆)
3431, 32, 33rhmimaidl 33403 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Base‘𝑆) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝐹𝐼) ∈ (LIdeal‘𝑆))
354, 29, 30, 34syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐹𝐼) ∈ (LIdeal‘𝑆))
3617fvexi 6872 . . . . . . . . . . 11 𝐵 ∈ V
3736rabex 5294 . . . . . . . . . 10 {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ∈ V
3837a1i 11 . . . . . . . . 9 (𝜑 → {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ∈ V)
3926, 28, 35, 38fvmptd3 6991 . . . . . . . 8 (𝜑 → (𝑊‘(𝐹𝐼)) = {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘})
4039eleq2d 2814 . . . . . . 7 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ 𝑔 ∈ {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘}))
41 sseq2 3973 . . . . . . . 8 (𝑘 = 𝑔 → ((𝐹𝐼) ⊆ 𝑘 ↔ (𝐹𝐼) ⊆ 𝑔))
4241elrab 3659 . . . . . . 7 (𝑔 ∈ {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ↔ (𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔))
4340, 42bitrdi 287 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔)))
44 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4544, 31rhmf 20394 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
464, 45syl 17 . . . . . . . . 9 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4746ffund 6692 . . . . . . . 8 (𝜑 → Fun 𝐹)
4844, 32lidlss 21122 . . . . . . . . . 10 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅))
4930, 48syl 17 . . . . . . . . 9 (𝜑𝐼 ⊆ (Base‘𝑅))
5046fdmd 6698 . . . . . . . . 9 (𝜑 → dom 𝐹 = (Base‘𝑅))
5149, 50sseqtrrd 3984 . . . . . . . 8 (𝜑𝐼 ⊆ dom 𝐹)
52 funimass3 7026 . . . . . . . 8 ((Fun 𝐹𝐼 ⊆ dom 𝐹) → ((𝐹𝐼) ⊆ 𝑔𝐼 ⊆ (𝐹𝑔)))
5347, 51, 52syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹𝐼) ⊆ 𝑔𝐼 ⊆ (𝐹𝑔)))
5453anbi2d 630 . . . . . 6 (𝜑 → ((𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔) ↔ (𝑔𝐵𝐼 ⊆ (𝐹𝑔))))
5513adantr 480 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝑆 ∈ CRing)
564adantr 480 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
573, 17eleqtrdi 2838 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝑔 ∈ (PrmIdeal‘𝑆))
5819rhmpreimaprmidl 33422 . . . . . . . . 9 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑔 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑔) ∈ 𝐴)
5955, 56, 57, 58syl21anc 837 . . . . . . . 8 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ 𝐴)
6059biantrurd 532 . . . . . . 7 ((𝜑𝑔𝐵) → (𝐼 ⊆ (𝐹𝑔) ↔ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔))))
6160pm5.32da 579 . . . . . 6 (𝜑 → ((𝑔𝐵𝐼 ⊆ (𝐹𝑔)) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))))
6243, 54, 613bitrd 305 . . . . 5 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))))
63 sseq2 3973 . . . . . . 7 (𝑘 = (𝐹𝑔) → (𝐼𝑘𝐼 ⊆ (𝐹𝑔)))
6463elrab 3659 . . . . . 6 ((𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘} ↔ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))
6564anbi2i 623 . . . . 5 ((𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘}) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔))))
6662, 65bitr4di 289 . . . 4 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘})))
67 rhmpreimacnlem.v . . . . . . 7 𝑉 = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
68 sseq1 3972 . . . . . . . 8 (𝑗 = 𝐼 → (𝑗𝑘𝐼𝑘))
6968rabbidv 3413 . . . . . . 7 (𝑗 = 𝐼 → {𝑘𝐴𝑗𝑘} = {𝑘𝐴𝐼𝑘})
7019fvexi 6872 . . . . . . . . 9 𝐴 ∈ V
7170rabex 5294 . . . . . . . 8 {𝑘𝐴𝐼𝑘} ∈ V
7271a1i 11 . . . . . . 7 (𝜑 → {𝑘𝐴𝐼𝑘} ∈ V)
7367, 69, 30, 72fvmptd3 6991 . . . . . 6 (𝜑 → (𝑉𝐼) = {𝑘𝐴𝐼𝑘})
7473eleq2d 2814 . . . . 5 (𝜑 → ((𝐹𝑔) ∈ (𝑉𝐼) ↔ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘}))
7574anbi2d 630 . . . 4 (𝜑 → ((𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘})))
7666, 75bitr4d 282 . . 3 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼))))
7712, 25, 763bitr4rd 312 . 2 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ 𝑔 ∈ (𝐺 “ (𝑉𝐼))))
7877eqrdv 2727 1 (𝜑 → (𝑊‘(𝐹𝐼)) = (𝐺 “ (𝑉𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  TopOpenctopn 17384  CRingccrg 20143   RingHom crh 20378  LIdealclidl 21116  PrmIdealcprmidl 33406  Speccrspec 33852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-prmidl 33407
This theorem is referenced by:  rhmpreimacn  33875
  Copyright terms: Public domain W3C validator