Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacnlem Structured version   Visualization version   GIF version

Theorem rhmpreimacnlem 32465
Description: Lemma for rhmpreimacn 32466. (Contributed by Thierry Arnoux, 7-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Spec‘𝑅)
rhmpreimacn.u 𝑈 = (Spec‘𝑆)
rhmpreimacn.a 𝐴 = (PrmIdeal‘𝑅)
rhmpreimacn.b 𝐵 = (PrmIdeal‘𝑆)
rhmpreimacn.j 𝐽 = (TopOpen‘𝑇)
rhmpreimacn.k 𝐾 = (TopOpen‘𝑈)
rhmpreimacn.g 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
rhmpreimacn.r (𝜑𝑅 ∈ CRing)
rhmpreimacn.s (𝜑𝑆 ∈ CRing)
rhmpreimacn.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (𝜑 → ran 𝐹 = (Base‘𝑆))
rhmpreimacnlem.1 (𝜑𝐼 ∈ (LIdeal‘𝑅))
rhmpreimacnlem.v 𝑉 = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
rhmpreimacnlem.w 𝑊 = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
Assertion
Ref Expression
rhmpreimacnlem (𝜑 → (𝑊‘(𝐹𝐼)) = (𝐺 “ (𝑉𝐼)))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑘   𝐵,𝑖,𝑗,𝑘   𝑘,𝐹,𝑖,𝑗   𝑖,𝐺   𝑖,𝐼,𝑗,𝑘   𝑖,𝐽,𝑗   𝑅,𝑖,𝑗,𝑘   𝑆,𝑖,𝑗,𝑘   𝑖,𝑉,𝑗   𝑗,𝑊   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑖,𝑗,𝑘)   𝑈(𝑖,𝑗,𝑘)   𝐺(𝑗,𝑘)   𝐽(𝑘)   𝐾(𝑖,𝑗,𝑘)   𝑉(𝑘)   𝑊(𝑖,𝑘)

Proof of Theorem rhmpreimacnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.g . . . . . 6 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
2 imaeq2 6009 . . . . . 6 (𝑖 = 𝑔 → (𝐹𝑖) = (𝐹𝑔))
3 simpr 485 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔𝐵)
4 rhmpreimacn.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
54elexd 3465 . . . . . . . 8 (𝜑𝐹 ∈ V)
6 cnvexg 7861 . . . . . . . 8 (𝐹 ∈ V → 𝐹 ∈ V)
7 imaexg 7852 . . . . . . . 8 (𝐹 ∈ V → (𝐹𝑔) ∈ V)
85, 6, 73syl 18 . . . . . . 7 (𝜑 → (𝐹𝑔) ∈ V)
98adantr 481 . . . . . 6 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ V)
101, 2, 3, 9fvmptd3 6971 . . . . 5 ((𝜑𝑔𝐵) → (𝐺𝑔) = (𝐹𝑔))
1110eleq1d 2822 . . . 4 ((𝜑𝑔𝐵) → ((𝐺𝑔) ∈ (𝑉𝐼) ↔ (𝐹𝑔) ∈ (𝑉𝐼)))
1211pm5.32da 579 . . 3 (𝜑 → ((𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼))))
13 rhmpreimacn.s . . . . . . . 8 (𝜑𝑆 ∈ CRing)
1413adantr 481 . . . . . . 7 ((𝜑𝑖𝐵) → 𝑆 ∈ CRing)
154adantr 481 . . . . . . 7 ((𝜑𝑖𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 485 . . . . . . . 8 ((𝜑𝑖𝐵) → 𝑖𝐵)
17 rhmpreimacn.b . . . . . . . 8 𝐵 = (PrmIdeal‘𝑆)
1816, 17eleqtrdi 2848 . . . . . . 7 ((𝜑𝑖𝐵) → 𝑖 ∈ (PrmIdeal‘𝑆))
19 rhmpreimacn.a . . . . . . . 8 𝐴 = (PrmIdeal‘𝑅)
2019rhmpreimaprmidl 32224 . . . . . . 7 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑖) ∈ 𝐴)
2114, 15, 18, 20syl21anc 836 . . . . . 6 ((𝜑𝑖𝐵) → (𝐹𝑖) ∈ 𝐴)
2221, 1fmptd 7062 . . . . 5 (𝜑𝐺:𝐵𝐴)
2322ffnd 6669 . . . 4 (𝜑𝐺 Fn 𝐵)
24 elpreima 7008 . . . 4 (𝐺 Fn 𝐵 → (𝑔 ∈ (𝐺 “ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼))))
2523, 24syl 17 . . 3 (𝜑 → (𝑔 ∈ (𝐺 “ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐺𝑔) ∈ (𝑉𝐼))))
26 rhmpreimacnlem.w . . . . . . . . 9 𝑊 = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
27 sseq1 3969 . . . . . . . . . 10 (𝑗 = (𝐹𝐼) → (𝑗𝑘 ↔ (𝐹𝐼) ⊆ 𝑘))
2827rabbidv 3415 . . . . . . . . 9 (𝑗 = (𝐹𝐼) → {𝑘𝐵𝑗𝑘} = {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘})
29 rhmpreimacn.1 . . . . . . . . . 10 (𝜑 → ran 𝐹 = (Base‘𝑆))
30 rhmpreimacnlem.1 . . . . . . . . . 10 (𝜑𝐼 ∈ (LIdeal‘𝑅))
31 eqid 2736 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
32 eqid 2736 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
33 eqid 2736 . . . . . . . . . . 11 (LIdeal‘𝑆) = (LIdeal‘𝑆)
3431, 32, 33rhmimaidl 32206 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Base‘𝑆) ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝐹𝐼) ∈ (LIdeal‘𝑆))
354, 29, 30, 34syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐹𝐼) ∈ (LIdeal‘𝑆))
3617fvexi 6856 . . . . . . . . . . 11 𝐵 ∈ V
3736rabex 5289 . . . . . . . . . 10 {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ∈ V
3837a1i 11 . . . . . . . . 9 (𝜑 → {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ∈ V)
3926, 28, 35, 38fvmptd3 6971 . . . . . . . 8 (𝜑 → (𝑊‘(𝐹𝐼)) = {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘})
4039eleq2d 2823 . . . . . . 7 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ 𝑔 ∈ {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘}))
41 sseq2 3970 . . . . . . . 8 (𝑘 = 𝑔 → ((𝐹𝐼) ⊆ 𝑘 ↔ (𝐹𝐼) ⊆ 𝑔))
4241elrab 3645 . . . . . . 7 (𝑔 ∈ {𝑘𝐵 ∣ (𝐹𝐼) ⊆ 𝑘} ↔ (𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔))
4340, 42bitrdi 286 . . . . . 6 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔)))
44 eqid 2736 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4544, 31rhmf 20158 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
464, 45syl 17 . . . . . . . . 9 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4746ffund 6672 . . . . . . . 8 (𝜑 → Fun 𝐹)
4844, 32lidlss 20680 . . . . . . . . . 10 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅))
4930, 48syl 17 . . . . . . . . 9 (𝜑𝐼 ⊆ (Base‘𝑅))
5046fdmd 6679 . . . . . . . . 9 (𝜑 → dom 𝐹 = (Base‘𝑅))
5149, 50sseqtrrd 3985 . . . . . . . 8 (𝜑𝐼 ⊆ dom 𝐹)
52 funimass3 7004 . . . . . . . 8 ((Fun 𝐹𝐼 ⊆ dom 𝐹) → ((𝐹𝐼) ⊆ 𝑔𝐼 ⊆ (𝐹𝑔)))
5347, 51, 52syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹𝐼) ⊆ 𝑔𝐼 ⊆ (𝐹𝑔)))
5453anbi2d 629 . . . . . 6 (𝜑 → ((𝑔𝐵 ∧ (𝐹𝐼) ⊆ 𝑔) ↔ (𝑔𝐵𝐼 ⊆ (𝐹𝑔))))
5513adantr 481 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝑆 ∈ CRing)
564adantr 481 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
573, 17eleqtrdi 2848 . . . . . . . . 9 ((𝜑𝑔𝐵) → 𝑔 ∈ (PrmIdeal‘𝑆))
5819rhmpreimaprmidl 32224 . . . . . . . . 9 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑔 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑔) ∈ 𝐴)
5955, 56, 57, 58syl21anc 836 . . . . . . . 8 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ 𝐴)
6059biantrurd 533 . . . . . . 7 ((𝜑𝑔𝐵) → (𝐼 ⊆ (𝐹𝑔) ↔ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔))))
6160pm5.32da 579 . . . . . 6 (𝜑 → ((𝑔𝐵𝐼 ⊆ (𝐹𝑔)) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))))
6243, 54, 613bitrd 304 . . . . 5 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))))
63 sseq2 3970 . . . . . . 7 (𝑘 = (𝐹𝑔) → (𝐼𝑘𝐼 ⊆ (𝐹𝑔)))
6463elrab 3645 . . . . . 6 ((𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘} ↔ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔)))
6564anbi2i 623 . . . . 5 ((𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘}) ↔ (𝑔𝐵 ∧ ((𝐹𝑔) ∈ 𝐴𝐼 ⊆ (𝐹𝑔))))
6662, 65bitr4di 288 . . . 4 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘})))
67 rhmpreimacnlem.v . . . . . . 7 𝑉 = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
68 sseq1 3969 . . . . . . . 8 (𝑗 = 𝐼 → (𝑗𝑘𝐼𝑘))
6968rabbidv 3415 . . . . . . 7 (𝑗 = 𝐼 → {𝑘𝐴𝑗𝑘} = {𝑘𝐴𝐼𝑘})
7019fvexi 6856 . . . . . . . . 9 𝐴 ∈ V
7170rabex 5289 . . . . . . . 8 {𝑘𝐴𝐼𝑘} ∈ V
7271a1i 11 . . . . . . 7 (𝜑 → {𝑘𝐴𝐼𝑘} ∈ V)
7367, 69, 30, 72fvmptd3 6971 . . . . . 6 (𝜑 → (𝑉𝐼) = {𝑘𝐴𝐼𝑘})
7473eleq2d 2823 . . . . 5 (𝜑 → ((𝐹𝑔) ∈ (𝑉𝐼) ↔ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘}))
7574anbi2d 629 . . . 4 (𝜑 → ((𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ {𝑘𝐴𝐼𝑘})))
7666, 75bitr4d 281 . . 3 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ (𝑔𝐵 ∧ (𝐹𝑔) ∈ (𝑉𝐼))))
7712, 25, 763bitr4rd 311 . 2 (𝜑 → (𝑔 ∈ (𝑊‘(𝐹𝐼)) ↔ 𝑔 ∈ (𝐺 “ (𝑉𝐼))))
7877eqrdv 2734 1 (𝜑 → (𝑊‘(𝐹𝐼)) = (𝐺 “ (𝑉𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  wss 3910  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  TopOpenctopn 17303  CRingccrg 19965   RingHom crh 20143  LIdealclidl 20631  PrmIdealcprmidl 32207  Speccrspec 32443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-prmidl 32208
This theorem is referenced by:  rhmpreimacn  32466
  Copyright terms: Public domain W3C validator