MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdirlem Structured version   Visualization version   GIF version

Theorem mulgdirlem 17957
Description: Lemma for mulgdir 17958. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdirlem ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdirlem
StepHypRef Expression
1 simpl1 1199 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
2 grpmnd 17816 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
31, 2syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
4 simprl 761 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
5 simprr 763 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
6 simpl23 1296 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
7 mulgnndir.b . . . . . 6 𝐵 = (Base‘𝐺)
8 mulgnndir.t . . . . . 6 · = (.g𝐺)
9 mulgnndir.p . . . . . 6 + = (+g𝐺)
107, 8, 9mulgnn0dir 17956 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
113, 4, 5, 6, 10syl13anc 1440 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
1211anassrs 461 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
13 simpl1 1199 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
14 simp22 1221 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
1514adantr 474 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℤ)
16 simpl23 1296 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
17 eqid 2778 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
187, 8, 17mulgneg 17946 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1913, 15, 16, 18syl3anc 1439 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
2019oveq1d 6937 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)))
217, 8mulgcl 17945 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2213, 15, 16, 21syl3anc 1439 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑁 · 𝑋) ∈ 𝐵)
23 eqid 2778 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
247, 9, 23, 17grplinv 17855 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2513, 22, 24syl2anc 579 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2620, 25eqtrd 2814 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (0g𝐺))
2726oveq2d 6938 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)))
28 simpl3 1203 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
29 nn0z 11752 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℕ0 → (𝑀 + 𝑁) ∈ ℤ)
3028, 29syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℤ)
317, 8mulgcl 17945 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
3213, 30, 16, 31syl3anc 1439 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
337, 9, 23grprid 17840 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3413, 32, 33syl2anc 579 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3527, 34eqtrd 2814 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
36 nn0z 11752 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
3736ad2antll 719 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
387, 8mulgcl 17945 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3913, 37, 16, 38syl3anc 1439 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
407, 9grpass 17818 . . . . . . 7 ((𝐺 ∈ Grp ∧ (((𝑀 + 𝑁) · 𝑋) ∈ 𝐵 ∧ (-𝑁 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4113, 32, 39, 22, 40syl13anc 1440 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4213, 2syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
43 simprr 763 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
447, 8, 9mulgnn0dir 17956 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
4542, 28, 43, 16, 44syl13anc 1440 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
46 simp21 1220 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
4746zcnd 11835 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
4814zcnd 11835 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
4947, 48addcld 10396 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
5049adantr 474 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℂ)
5148adantr 474 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
5250, 51negsubd 10740 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = ((𝑀 + 𝑁) − 𝑁))
5347adantr 474 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℂ)
5453, 51pncand 10735 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
5552, 54eqtrd 2814 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = 𝑀)
5655oveq1d 6937 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (𝑀 · 𝑋))
5745, 56eqtr3d 2816 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) = (𝑀 · 𝑋))
5857oveq1d 6937 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5941, 58eqtr3d 2816 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6035, 59eqtr3d 2816 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6160anassrs 461 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ -𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
62 elznn0 11743 . . . . . 6 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6362simprbi 492 . . . . 5 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6414, 63syl 17 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6564adantr 474 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6612, 61, 65mpjaodan 944 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
67 simpl1 1199 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Grp)
6846adantr 474 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
69 simpl23 1296 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
707, 8mulgcl 17945 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
7167, 68, 69, 70syl3anc 1439 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
7268znegcld 11836 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℤ)
737, 8mulgcl 17945 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) ∈ 𝐵)
7467, 72, 69, 73syl3anc 1439 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) ∈ 𝐵)
75293ad2ant3 1126 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7675adantr 474 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7767, 76, 69, 31syl3anc 1439 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
787, 9grpass 17818 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (-𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
7967, 71, 74, 77, 78syl13anc 1440 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
807, 8, 17mulgneg 17946 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8167, 68, 69, 80syl3anc 1439 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8281oveq2d 6938 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))))
837, 9, 23, 17grprinv 17856 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8467, 71, 83syl2anc 579 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8582, 84eqtrd 2814 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = (0g𝐺))
8685oveq1d 6937 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)))
877, 9, 23grplid 17839 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8867, 77, 87syl2anc 579 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8986, 88eqtrd 2814 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
9067, 2syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
91 simpr 479 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
92 simpl3 1203 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
937, 8, 9mulgnn0dir 17956 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0𝑋𝐵)) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9490, 91, 92, 69, 93syl13anc 1440 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9547adantr 474 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
9695negcld 10721 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℂ)
9749adantr 474 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
9896, 97addcomd 10578 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = ((𝑀 + 𝑁) + -𝑀))
9997, 95negsubd 10740 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
10048adantr 474 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
10195, 100pncan2d 10736 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
10298, 99, 1013eqtrd 2818 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = 𝑁)
103102oveq1d 6937 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = (𝑁 · 𝑋))
10494, 103eqtr3d 2816 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)) = (𝑁 · 𝑋))
105104oveq2d 6938 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
10679, 89, 1053eqtr3d 2822 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
107 elznn0 11743 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
108107simprbi 492 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
10946, 108syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
11066, 106, 109mpjaodan 944 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  cfv 6135  (class class class)co 6922  cc 10270  cr 10271   + caddc 10275  cmin 10606  -cneg 10607  0cn0 11642  cz 11728  Basecbs 16255  +gcplusg 16338  0gc0g 16486  Mndcmnd 17680  Grpcgrp 17809  invgcminusg 17810  .gcmg 17927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-seq 13120  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-mulg 17928
This theorem is referenced by:  mulgdir  17958
  Copyright terms: Public domain W3C validator