![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnncvsaddassdemo | Structured version Visualization version GIF version |
Description: Derive the associative law for complex number addition addass 10226 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnncvsaddassdemo | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 19984 | . . 3 ⊢ ℂfld ∈ Ring | |
2 | ringgrp 18761 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ℂfld ∈ Grp |
4 | cnfldbas 19966 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
5 | cnfldadd 19967 | . . 3 ⊢ + = (+g‘ℂfld) | |
6 | 4, 5 | grpass 17640 | . 2 ⊢ ((ℂfld ∈ Grp ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
7 | 3, 6 | mpan 664 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 (class class class)co 6794 ℂcc 10137 + caddc 10142 Grpcgrp 17631 Ringcrg 18756 ℂfldccnfld 19962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-cnex 10195 ax-resscn 10196 ax-1cn 10197 ax-icn 10198 ax-addcl 10199 ax-addrcl 10200 ax-mulcl 10201 ax-mulrcl 10202 ax-mulcom 10203 ax-addass 10204 ax-mulass 10205 ax-distr 10206 ax-i2m1 10207 ax-1ne0 10208 ax-1rid 10209 ax-rnegex 10210 ax-rrecex 10211 ax-cnre 10212 ax-pre-lttri 10213 ax-pre-lttrn 10214 ax-pre-ltadd 10215 ax-pre-mulgt0 10216 ax-addf 10218 ax-mulf 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-pss 3740 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5824 df-ord 5870 df-on 5871 df-lim 5872 df-suc 5873 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-riota 6755 df-ov 6797 df-oprab 6798 df-mpt2 6799 df-om 7214 df-1st 7316 df-2nd 7317 df-wrecs 7560 df-recs 7622 df-rdg 7660 df-1o 7714 df-oadd 7718 df-er 7897 df-en 8111 df-dom 8112 df-sdom 8113 df-fin 8114 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 df-sub 10471 df-neg 10472 df-nn 11224 df-2 11282 df-3 11283 df-4 11284 df-5 11285 df-6 11286 df-7 11287 df-8 11288 df-9 11289 df-n0 11496 df-z 11581 df-dec 11697 df-uz 11890 df-fz 12535 df-struct 16067 df-ndx 16068 df-slot 16069 df-base 16071 df-sets 16072 df-plusg 16163 df-mulr 16164 df-starv 16165 df-tset 16169 df-ple 16170 df-ds 16173 df-unif 16174 df-0g 16311 df-mgm 17451 df-sgrp 17493 df-mnd 17504 df-grp 17634 df-cmn 18403 df-mgp 18699 df-ring 18758 df-cring 18759 df-cnfld 19963 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |