MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasgrp Structured version   Visualization version   GIF version

Theorem imasgrp 18969
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u (𝜑𝑈 = (𝐹s 𝑅))
imasgrp.v (𝜑𝑉 = (Base‘𝑅))
imasgrp.p (𝜑+ = (+g𝑅))
imasgrp.f (𝜑𝐹:𝑉onto𝐵)
imasgrp.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasgrp.r (𝜑𝑅 ∈ Grp)
imasgrp.z 0 = (0g𝑅)
Assertion
Ref Expression
imasgrp (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝜑   𝑅,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasgrp.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasgrp.p . 2 (𝜑+ = (+g𝑅))
4 imasgrp.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasgrp.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasgrp.r . 2 (𝜑𝑅 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Grp)
8 simp2 1137 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1133 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2833 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1138 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2833 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2731 . . . . 5 (+g𝑅) = (+g𝑅)
1513, 14grpcl 18854 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
167, 10, 12, 15syl3anc 1373 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
1733ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → + = (+g𝑅))
1817oveqd 7363 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
1916, 18, 93eltr4d 2846 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
206adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Grp)
21103adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
22123adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
242adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2523, 24eleqtrd 2833 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2613, 14grpass 18855 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
2720, 21, 22, 25, 26syl13anc 1374 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
283adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → + = (+g𝑅))
29183adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
30 eqidd 2732 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 = 𝑧)
3128, 29, 30oveq123d 7367 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧))
32 eqidd 2732 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 = 𝑥)
3328oveqd 7363 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
3428, 32, 33oveq123d 7367 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
3527, 31, 343eqtr4d 2776 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3635fveq2d 6826 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
37 imasgrp.z . . . . 5 0 = (0g𝑅)
3813, 37grpidcl 18878 . . . 4 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
396, 38syl 17 . . 3 (𝜑0 ∈ (Base‘𝑅))
4039, 2eleqtrrd 2834 . 2 (𝜑0𝑉)
413adantr 480 . . . . 5 ((𝜑𝑥𝑉) → + = (+g𝑅))
4241oveqd 7363 . . . 4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = ( 0 (+g𝑅)𝑥))
432eleq2d 2817 . . . . . 6 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
4443biimpa 476 . . . . 5 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
4513, 14, 37grplid 18880 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
466, 44, 45syl2an2r 685 . . . 4 ((𝜑𝑥𝑉) → ( 0 (+g𝑅)𝑥) = 𝑥)
4742, 46eqtrd 2766 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
4847fveq2d 6826 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
49 eqid 2731 . . . . 5 (invg𝑅) = (invg𝑅)
5013, 49grpinvcl 18900 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
516, 44, 50syl2an2r 685 . . 3 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
522adantr 480 . . 3 ((𝜑𝑥𝑉) → 𝑉 = (Base‘𝑅))
5351, 52eleqtrrd 2834 . 2 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ 𝑉)
5441oveqd 7363 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = (((invg𝑅)‘𝑥)(+g𝑅)𝑥))
5513, 14, 37, 49grplinv 18902 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
566, 44, 55syl2an2r 685 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
5754, 56eqtrd 2766 . . 3 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = 0 )
5857fveq2d 6826 . 2 ((𝜑𝑥𝑉) → (𝐹‘(((invg𝑅)‘𝑥) + 𝑥)) = (𝐹0 ))
591, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58imasgrp2 18968 1 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ontowfo 6479  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  s cimas 17408  Grpcgrp 18846  invgcminusg 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850
This theorem is referenced by:  imasgrpf1  18970  imasabl  19788  imasring  20248  imaslmod  33318  imasghm  33320  imasgim  43141
  Copyright terms: Public domain W3C validator