MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasgrp Structured version   Visualization version   GIF version

Theorem imasgrp 18863
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u (𝜑𝑈 = (𝐹s 𝑅))
imasgrp.v (𝜑𝑉 = (Base‘𝑅))
imasgrp.p (𝜑+ = (+g𝑅))
imasgrp.f (𝜑𝐹:𝑉onto𝐵)
imasgrp.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasgrp.r (𝜑𝑅 ∈ Grp)
imasgrp.z 0 = (0g𝑅)
Assertion
Ref Expression
imasgrp (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝜑   𝑅,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasgrp.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasgrp.p . 2 (𝜑+ = (+g𝑅))
4 imasgrp.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasgrp.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasgrp.r . 2 (𝜑𝑅 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Grp)
8 simp2 1137 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1133 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2840 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1138 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2840 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2736 . . . . 5 (+g𝑅) = (+g𝑅)
1513, 14grpcl 18756 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
167, 10, 12, 15syl3anc 1371 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
1733ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → + = (+g𝑅))
1817oveqd 7374 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
1916, 18, 93eltr4d 2853 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
206adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Grp)
21103adant3r3 1184 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
22123adant3r3 1184 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 simpr3 1196 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
242adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2523, 24eleqtrd 2840 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2613, 14grpass 18757 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
2720, 21, 22, 25, 26syl13anc 1372 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
283adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → + = (+g𝑅))
29183adant3r3 1184 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
30 eqidd 2737 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 = 𝑧)
3128, 29, 30oveq123d 7378 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧))
32 eqidd 2737 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 = 𝑥)
3328oveqd 7374 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
3428, 32, 33oveq123d 7378 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
3527, 31, 343eqtr4d 2786 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3635fveq2d 6846 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
37 imasgrp.z . . . . 5 0 = (0g𝑅)
3813, 37grpidcl 18778 . . . 4 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
396, 38syl 17 . . 3 (𝜑0 ∈ (Base‘𝑅))
4039, 2eleqtrrd 2841 . 2 (𝜑0𝑉)
413adantr 481 . . . . 5 ((𝜑𝑥𝑉) → + = (+g𝑅))
4241oveqd 7374 . . . 4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = ( 0 (+g𝑅)𝑥))
432eleq2d 2823 . . . . . 6 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
4443biimpa 477 . . . . 5 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
4513, 14, 37grplid 18780 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
466, 44, 45syl2an2r 683 . . . 4 ((𝜑𝑥𝑉) → ( 0 (+g𝑅)𝑥) = 𝑥)
4742, 46eqtrd 2776 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
4847fveq2d 6846 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
49 eqid 2736 . . . . 5 (invg𝑅) = (invg𝑅)
5013, 49grpinvcl 18798 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
516, 44, 50syl2an2r 683 . . 3 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
522adantr 481 . . 3 ((𝜑𝑥𝑉) → 𝑉 = (Base‘𝑅))
5351, 52eleqtrrd 2841 . 2 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ 𝑉)
5441oveqd 7374 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = (((invg𝑅)‘𝑥)(+g𝑅)𝑥))
5513, 14, 37, 49grplinv 18800 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
566, 44, 55syl2an2r 683 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
5754, 56eqtrd 2776 . . 3 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = 0 )
5857fveq2d 6846 . 2 ((𝜑𝑥𝑉) → (𝐹‘(((invg𝑅)‘𝑥) + 𝑥)) = (𝐹0 ))
591, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58imasgrp2 18862 1 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ontowfo 6494  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  0gc0g 17321  s cimas 17386  Grpcgrp 18748  invgcminusg 18749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-0g 17323  df-imas 17390  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752
This theorem is referenced by:  imasgrpf1  18864  imasring  20045  imaslmod  32145  imasgim  41413
  Copyright terms: Public domain W3C validator