MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasgrp Structured version   Visualization version   GIF version

Theorem imasgrp 19037
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u (𝜑𝑈 = (𝐹s 𝑅))
imasgrp.v (𝜑𝑉 = (Base‘𝑅))
imasgrp.p (𝜑+ = (+g𝑅))
imasgrp.f (𝜑𝐹:𝑉onto𝐵)
imasgrp.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasgrp.r (𝜑𝑅 ∈ Grp)
imasgrp.z 0 = (0g𝑅)
Assertion
Ref Expression
imasgrp (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝜑   𝑅,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasgrp.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasgrp.p . 2 (𝜑+ = (+g𝑅))
4 imasgrp.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasgrp.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasgrp.r . 2 (𝜑𝑅 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Grp)
8 simp2 1137 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1133 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2836 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1138 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2836 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2735 . . . . 5 (+g𝑅) = (+g𝑅)
1513, 14grpcl 18922 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
167, 10, 12, 15syl3anc 1373 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
1733ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → + = (+g𝑅))
1817oveqd 7420 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
1916, 18, 93eltr4d 2849 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
206adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Grp)
21103adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
22123adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
242adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2523, 24eleqtrd 2836 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2613, 14grpass 18923 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
2720, 21, 22, 25, 26syl13anc 1374 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
283adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → + = (+g𝑅))
29183adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
30 eqidd 2736 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 = 𝑧)
3128, 29, 30oveq123d 7424 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧))
32 eqidd 2736 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 = 𝑥)
3328oveqd 7420 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
3428, 32, 33oveq123d 7424 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
3527, 31, 343eqtr4d 2780 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3635fveq2d 6879 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
37 imasgrp.z . . . . 5 0 = (0g𝑅)
3813, 37grpidcl 18946 . . . 4 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
396, 38syl 17 . . 3 (𝜑0 ∈ (Base‘𝑅))
4039, 2eleqtrrd 2837 . 2 (𝜑0𝑉)
413adantr 480 . . . . 5 ((𝜑𝑥𝑉) → + = (+g𝑅))
4241oveqd 7420 . . . 4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = ( 0 (+g𝑅)𝑥))
432eleq2d 2820 . . . . . 6 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
4443biimpa 476 . . . . 5 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
4513, 14, 37grplid 18948 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
466, 44, 45syl2an2r 685 . . . 4 ((𝜑𝑥𝑉) → ( 0 (+g𝑅)𝑥) = 𝑥)
4742, 46eqtrd 2770 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
4847fveq2d 6879 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
49 eqid 2735 . . . . 5 (invg𝑅) = (invg𝑅)
5013, 49grpinvcl 18968 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
516, 44, 50syl2an2r 685 . . 3 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
522adantr 480 . . 3 ((𝜑𝑥𝑉) → 𝑉 = (Base‘𝑅))
5351, 52eleqtrrd 2837 . 2 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ 𝑉)
5441oveqd 7420 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = (((invg𝑅)‘𝑥)(+g𝑅)𝑥))
5513, 14, 37, 49grplinv 18970 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
566, 44, 55syl2an2r 685 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
5754, 56eqtrd 2770 . . 3 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = 0 )
5857fveq2d 6879 . 2 ((𝜑𝑥𝑉) → (𝐹‘(((invg𝑅)‘𝑥) + 𝑥)) = (𝐹0 ))
591, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58imasgrp2 19036 1 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  ontowfo 6528  cfv 6530  (class class class)co 7403  Basecbs 17226  +gcplusg 17269  0gc0g 17451  s cimas 17516  Grpcgrp 18914  invgcminusg 18915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-0g 17453  df-imas 17520  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918
This theorem is referenced by:  imasgrpf1  19038  imasabl  19855  imasring  20288  imaslmod  33314  imasghm  33316  imasgim  43071
  Copyright terms: Public domain W3C validator