MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasgrp Structured version   Visualization version   GIF version

Theorem imasgrp 18988
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u (𝜑𝑈 = (𝐹s 𝑅))
imasgrp.v (𝜑𝑉 = (Base‘𝑅))
imasgrp.p (𝜑+ = (+g𝑅))
imasgrp.f (𝜑𝐹:𝑉onto𝐵)
imasgrp.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasgrp.r (𝜑𝑅 ∈ Grp)
imasgrp.z 0 = (0g𝑅)
Assertion
Ref Expression
imasgrp (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝜑   𝑅,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasgrp.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasgrp.p . 2 (𝜑+ = (+g𝑅))
4 imasgrp.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasgrp.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasgrp.r . 2 (𝜑𝑅 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Grp)
8 simp2 1137 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1133 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2830 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1138 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2830 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
1513, 14grpcl 18873 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
167, 10, 12, 15syl3anc 1373 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
1733ad2ant1 1133 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → + = (+g𝑅))
1817oveqd 7404 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
1916, 18, 93eltr4d 2843 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
206adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Grp)
21103adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
22123adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
242adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2523, 24eleqtrd 2830 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2613, 14grpass 18874 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
2720, 21, 22, 25, 26syl13anc 1374 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
283adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → + = (+g𝑅))
29183adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
30 eqidd 2730 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 = 𝑧)
3128, 29, 30oveq123d 7408 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧))
32 eqidd 2730 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 = 𝑥)
3328oveqd 7404 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
3428, 32, 33oveq123d 7408 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
3527, 31, 343eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3635fveq2d 6862 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
37 imasgrp.z . . . . 5 0 = (0g𝑅)
3813, 37grpidcl 18897 . . . 4 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
396, 38syl 17 . . 3 (𝜑0 ∈ (Base‘𝑅))
4039, 2eleqtrrd 2831 . 2 (𝜑0𝑉)
413adantr 480 . . . . 5 ((𝜑𝑥𝑉) → + = (+g𝑅))
4241oveqd 7404 . . . 4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = ( 0 (+g𝑅)𝑥))
432eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
4443biimpa 476 . . . . 5 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
4513, 14, 37grplid 18899 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
466, 44, 45syl2an2r 685 . . . 4 ((𝜑𝑥𝑉) → ( 0 (+g𝑅)𝑥) = 𝑥)
4742, 46eqtrd 2764 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
4847fveq2d 6862 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
49 eqid 2729 . . . . 5 (invg𝑅) = (invg𝑅)
5013, 49grpinvcl 18919 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
516, 44, 50syl2an2r 685 . . 3 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
522adantr 480 . . 3 ((𝜑𝑥𝑉) → 𝑉 = (Base‘𝑅))
5351, 52eleqtrrd 2831 . 2 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ 𝑉)
5441oveqd 7404 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = (((invg𝑅)‘𝑥)(+g𝑅)𝑥))
5513, 14, 37, 49grplinv 18921 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
566, 44, 55syl2an2r 685 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
5754, 56eqtrd 2764 . . 3 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = 0 )
5857fveq2d 6862 . 2 ((𝜑𝑥𝑉) → (𝐹‘(((invg𝑅)‘𝑥) + 𝑥)) = (𝐹0 ))
591, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58imasgrp2 18987 1 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ontowfo 6509  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  s cimas 17467  Grpcgrp 18865  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869
This theorem is referenced by:  imasgrpf1  18989  imasabl  19806  imasring  20239  imaslmod  33324  imasghm  33326  imasgim  43089
  Copyright terms: Public domain W3C validator