Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1invg | Structured version Visualization version GIF version |
Description: The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1invg.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1invg.n | ⊢ 𝑁 = (invg‘𝑌) |
deg1invg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
deg1invg | ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addle.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | deg1addle.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | 2 | ply1lmod 21421 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ LMod) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ LMod) |
5 | deg1invg.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
6 | deg1invg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
7 | deg1invg.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑌) | |
8 | 2 | ply1sca2 21423 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘𝑌) |
9 | eqid 2740 | . . . . 5 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
10 | eqid 2740 | . . . . 5 ⊢ (1r‘( I ‘𝑅)) = (1r‘( I ‘𝑅)) | |
11 | eqid 2740 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
12 | 11 | grpinvfvi 18620 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘( I ‘𝑅)) |
13 | 6, 7, 8, 9, 10, 12 | lmodvneg1 20164 | . . . 4 ⊢ ((𝑌 ∈ LMod ∧ 𝐹 ∈ 𝐵) → (((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹) = (𝑁‘𝐹)) |
14 | 4, 5, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹) = (𝑁‘𝐹)) |
15 | 14 | fveq2d 6775 | . 2 ⊢ (𝜑 → (𝐷‘(((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹)) = (𝐷‘(𝑁‘𝐹))) |
16 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
17 | eqid 2740 | . . 3 ⊢ (RLReg‘𝑅) = (RLReg‘𝑅) | |
18 | fvi 6841 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ( I ‘𝑅) = 𝑅) | |
19 | 1, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
20 | 19 | fveq2d 6775 | . . . . 5 ⊢ (𝜑 → (1r‘( I ‘𝑅)) = (1r‘𝑅)) |
21 | 20 | fveq2d 6775 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘( I ‘𝑅))) = ((invg‘𝑅)‘(1r‘𝑅))) |
22 | eqid 2740 | . . . . . . 7 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
23 | 17, 22 | unitrrg 20562 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
24 | 1, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
25 | eqid 2740 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
26 | 22, 25 | 1unit 19898 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Unit‘𝑅)) |
27 | 22, 11 | unitnegcl 19921 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Unit‘𝑅)) |
28 | 1, 26, 27 | syl2anc2 585 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Unit‘𝑅)) |
29 | 24, 28 | sseldd 3927 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (RLReg‘𝑅)) |
30 | 21, 29 | eqeltrd 2841 | . . 3 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘( I ‘𝑅))) ∈ (RLReg‘𝑅)) |
31 | 2, 16, 1, 6, 17, 9, 30, 5 | deg1vsca 25268 | . 2 ⊢ (𝜑 → (𝐷‘(((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹)) = (𝐷‘𝐹)) |
32 | 15, 31 | eqtr3d 2782 | 1 ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 I cid 5489 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 ·𝑠 cvsca 16964 invgcminusg 18576 1rcur 19735 Ringcrg 19781 Unitcui 19879 LModclmod 20121 RLRegcrlreg 20548 Poly1cpl1 21346 deg1 cdg1 25214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-tset 16979 df-ple 16980 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-sbg 18580 df-subg 18750 df-mgp 19719 df-ur 19736 df-ring 19783 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-lmod 20123 df-lss 20192 df-rlreg 20552 df-psr 21110 df-mpl 21112 df-opsr 21114 df-psr1 21349 df-ply1 21351 df-mdeg 25215 df-deg1 25216 |
This theorem is referenced by: deg1suble 25270 deg1sub 25271 |
Copyright terms: Public domain | W3C validator |