Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1invg | Structured version Visualization version GIF version |
Description: The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1invg.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1invg.n | ⊢ 𝑁 = (invg‘𝑌) |
deg1invg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
deg1invg | ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addle.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | deg1addle.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | 2 | ply1lmod 21333 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ LMod) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ LMod) |
5 | deg1invg.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
6 | deg1invg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
7 | deg1invg.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑌) | |
8 | 2 | ply1sca2 21335 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘𝑌) |
9 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
10 | eqid 2738 | . . . . 5 ⊢ (1r‘( I ‘𝑅)) = (1r‘( I ‘𝑅)) | |
11 | eqid 2738 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
12 | 11 | grpinvfvi 18537 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘( I ‘𝑅)) |
13 | 6, 7, 8, 9, 10, 12 | lmodvneg1 20081 | . . . 4 ⊢ ((𝑌 ∈ LMod ∧ 𝐹 ∈ 𝐵) → (((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹) = (𝑁‘𝐹)) |
14 | 4, 5, 13 | syl2anc 583 | . . 3 ⊢ (𝜑 → (((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹) = (𝑁‘𝐹)) |
15 | 14 | fveq2d 6760 | . 2 ⊢ (𝜑 → (𝐷‘(((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹)) = (𝐷‘(𝑁‘𝐹))) |
16 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
17 | eqid 2738 | . . 3 ⊢ (RLReg‘𝑅) = (RLReg‘𝑅) | |
18 | fvi 6826 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ( I ‘𝑅) = 𝑅) | |
19 | 1, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
20 | 19 | fveq2d 6760 | . . . . 5 ⊢ (𝜑 → (1r‘( I ‘𝑅)) = (1r‘𝑅)) |
21 | 20 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘( I ‘𝑅))) = ((invg‘𝑅)‘(1r‘𝑅))) |
22 | eqid 2738 | . . . . . . 7 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
23 | 17, 22 | unitrrg 20477 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
24 | 1, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
25 | eqid 2738 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
26 | 22, 25 | 1unit 19815 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Unit‘𝑅)) |
27 | 22, 11 | unitnegcl 19838 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Unit‘𝑅)) |
28 | 1, 26, 27 | syl2anc2 584 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Unit‘𝑅)) |
29 | 24, 28 | sseldd 3918 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (RLReg‘𝑅)) |
30 | 21, 29 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘( I ‘𝑅))) ∈ (RLReg‘𝑅)) |
31 | 2, 16, 1, 6, 17, 9, 30, 5 | deg1vsca 25175 | . 2 ⊢ (𝜑 → (𝐷‘(((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹)) = (𝐷‘𝐹)) |
32 | 15, 31 | eqtr3d 2780 | 1 ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 I cid 5479 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ·𝑠 cvsca 16892 invgcminusg 18493 1rcur 19652 Ringcrg 19698 Unitcui 19796 LModclmod 20038 RLRegcrlreg 20463 Poly1cpl1 21258 deg1 cdg1 25121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-lmod 20040 df-lss 20109 df-rlreg 20467 df-psr 21022 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-ply1 21263 df-mdeg 25122 df-deg1 25123 |
This theorem is referenced by: deg1suble 25177 deg1sub 25178 |
Copyright terms: Public domain | W3C validator |