| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1invg | Structured version Visualization version GIF version | ||
| Description: The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
| deg1addle.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| deg1invg.b | ⊢ 𝐵 = (Base‘𝑌) |
| deg1invg.n | ⊢ 𝑁 = (invg‘𝑌) |
| deg1invg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| deg1invg | ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1addle.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | deg1addle.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
| 3 | 2 | ply1lmod 22220 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ LMod) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ LMod) |
| 5 | deg1invg.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 6 | deg1invg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
| 7 | deg1invg.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑌) | |
| 8 | 2 | ply1sca2 22222 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘𝑌) |
| 9 | eqid 2734 | . . . . 5 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
| 10 | eqid 2734 | . . . . 5 ⊢ (1r‘( I ‘𝑅)) = (1r‘( I ‘𝑅)) | |
| 11 | eqid 2734 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 12 | 11 | grpinvfvi 18974 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘( I ‘𝑅)) |
| 13 | 6, 7, 8, 9, 10, 12 | lmodvneg1 20876 | . . . 4 ⊢ ((𝑌 ∈ LMod ∧ 𝐹 ∈ 𝐵) → (((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹) = (𝑁‘𝐹)) |
| 14 | 4, 5, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹) = (𝑁‘𝐹)) |
| 15 | 14 | fveq2d 6891 | . 2 ⊢ (𝜑 → (𝐷‘(((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹)) = (𝐷‘(𝑁‘𝐹))) |
| 16 | deg1addle.d | . . 3 ⊢ 𝐷 = (deg1‘𝑅) | |
| 17 | eqid 2734 | . . 3 ⊢ (RLReg‘𝑅) = (RLReg‘𝑅) | |
| 18 | fvi 6966 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ( I ‘𝑅) = 𝑅) | |
| 19 | 1, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
| 20 | 19 | fveq2d 6891 | . . . . 5 ⊢ (𝜑 → (1r‘( I ‘𝑅)) = (1r‘𝑅)) |
| 21 | 20 | fveq2d 6891 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘( I ‘𝑅))) = ((invg‘𝑅)‘(1r‘𝑅))) |
| 22 | eqid 2734 | . . . . . . 7 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 23 | 17, 22 | unitrrg 20676 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
| 24 | 1, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
| 25 | eqid 2734 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 26 | 22, 25 | 1unit 20347 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Unit‘𝑅)) |
| 27 | 22, 11 | unitnegcl 20370 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Unit‘𝑅)) |
| 28 | 1, 26, 27 | syl2anc2 585 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Unit‘𝑅)) |
| 29 | 24, 28 | sseldd 3966 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘𝑅)) ∈ (RLReg‘𝑅)) |
| 30 | 21, 29 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → ((invg‘𝑅)‘(1r‘( I ‘𝑅))) ∈ (RLReg‘𝑅)) |
| 31 | 2, 16, 1, 6, 17, 9, 30, 5 | deg1vsca 26099 | . 2 ⊢ (𝜑 → (𝐷‘(((invg‘𝑅)‘(1r‘( I ‘𝑅)))( ·𝑠 ‘𝑌)𝐹)) = (𝐷‘𝐹)) |
| 32 | 15, 31 | eqtr3d 2771 | 1 ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 I cid 5559 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 ·𝑠 cvsca 17281 invgcminusg 18926 1rcur 20151 Ringcrg 20203 Unitcui 20328 RLRegcrlreg 20664 LModclmod 20831 Poly1cpl1 22145 deg1cdg1 26048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-hom 17301 df-cco 17302 df-0g 17462 df-prds 17468 df-pws 17470 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-rlreg 20667 df-lmod 20833 df-lss 20903 df-psr 21896 df-mpl 21898 df-opsr 21900 df-psr1 22148 df-ply1 22150 df-mdeg 26049 df-deg1 26050 |
| This theorem is referenced by: deg1suble 26101 deg1sub 26102 |
| Copyright terms: Public domain | W3C validator |